153 lines
4.0 KiB
Go
153 lines
4.0 KiB
Go
|
package ctwatch
|
||
|
|
||
|
import (
|
||
|
"github.com/google/certificate-transparency/go"
|
||
|
"bytes"
|
||
|
"crypto/sha256"
|
||
|
)
|
||
|
|
||
|
func reverseHashes (hashes []ct.MerkleTreeNode) {
|
||
|
for i := 0; i < len(hashes) / 2; i++ {
|
||
|
j := len(hashes) - i - 1
|
||
|
hashes[i], hashes[j] = hashes[j], hashes[i]
|
||
|
}
|
||
|
}
|
||
|
|
||
|
func VerifyConsistencyProof (proof ct.ConsistencyProof, first *ct.SignedTreeHead, second *ct.SignedTreeHead) (bool, []ct.MerkleTreeNode) {
|
||
|
if second.TreeSize < first.TreeSize {
|
||
|
// Can't be consistent if tree got smaller
|
||
|
return false, nil
|
||
|
}
|
||
|
if first.TreeSize == second.TreeSize {
|
||
|
return bytes.Equal(first.SHA256RootHash[:], second.SHA256RootHash[:]) && len(proof) == 0, nil
|
||
|
}
|
||
|
if first.TreeSize == 0 {
|
||
|
// The purpose of the consistency proof is to ensure the append-only
|
||
|
// nature of the tree; i.e. that the first tree is a "prefix" of the
|
||
|
// second tree. If the first tree is empty, then it's trivially a prefix
|
||
|
// of the second tree, so no proof is needed.
|
||
|
return len(proof) == 0, nil
|
||
|
}
|
||
|
// Guaranteed that 0 < first.TreeSize < second.TreeSize
|
||
|
|
||
|
node := first.TreeSize - 1
|
||
|
lastNode := second.TreeSize - 1
|
||
|
|
||
|
// While we're the right child, everything is in both trees, so move one level up.
|
||
|
for node % 2 == 1 {
|
||
|
node /= 2
|
||
|
lastNode /= 2
|
||
|
}
|
||
|
|
||
|
var leftHashes []ct.MerkleTreeNode
|
||
|
var newHash ct.MerkleTreeNode
|
||
|
var oldHash ct.MerkleTreeNode
|
||
|
if node > 0 {
|
||
|
if len(proof) == 0 {
|
||
|
return false, nil
|
||
|
}
|
||
|
newHash = proof[0]
|
||
|
proof = proof[1:]
|
||
|
} else {
|
||
|
// The old tree was balanced, so we already know the first hash to use
|
||
|
newHash = first.SHA256RootHash[:]
|
||
|
}
|
||
|
oldHash = newHash
|
||
|
leftHashes = append(leftHashes, newHash)
|
||
|
|
||
|
for node > 0 {
|
||
|
if node % 2 == 1 {
|
||
|
// node is a right child; left sibling exists in both trees
|
||
|
if len(proof) == 0 {
|
||
|
return false, nil
|
||
|
}
|
||
|
newHash = hashChildren(proof[0], newHash)
|
||
|
oldHash = hashChildren(proof[0], oldHash)
|
||
|
leftHashes = append(leftHashes, proof[0])
|
||
|
proof = proof[1:]
|
||
|
} else if node < lastNode {
|
||
|
// node is a left child; rigth sibling only exists in the new tree
|
||
|
if len(proof) == 0 {
|
||
|
return false, nil
|
||
|
}
|
||
|
newHash = hashChildren(newHash, proof[0])
|
||
|
proof = proof[1:]
|
||
|
} // else node == lastNode: node is a let child with no sibling in either tree
|
||
|
node /= 2
|
||
|
lastNode /= 2
|
||
|
}
|
||
|
|
||
|
if !bytes.Equal(oldHash, first.SHA256RootHash[:]) {
|
||
|
return false, nil
|
||
|
}
|
||
|
|
||
|
// If trees have different height, continue up the path to reach the new root
|
||
|
for lastNode > 0 {
|
||
|
if len(proof) == 0 {
|
||
|
return false, nil
|
||
|
}
|
||
|
newHash = hashChildren(newHash, proof[0])
|
||
|
proof = proof[1:]
|
||
|
lastNode /= 2
|
||
|
}
|
||
|
|
||
|
if !bytes.Equal(newHash, second.SHA256RootHash[:]) {
|
||
|
return false, nil
|
||
|
}
|
||
|
|
||
|
reverseHashes(leftHashes)
|
||
|
|
||
|
return true, leftHashes
|
||
|
}
|
||
|
|
||
|
func hashLeaf (leafBytes []byte) ct.MerkleTreeNode {
|
||
|
hasher := sha256.New()
|
||
|
hasher.Write([]byte{0x00})
|
||
|
hasher.Write(leafBytes)
|
||
|
return hasher.Sum(nil)
|
||
|
}
|
||
|
|
||
|
func hashChildren (left ct.MerkleTreeNode, right ct.MerkleTreeNode) ct.MerkleTreeNode {
|
||
|
hasher := sha256.New()
|
||
|
hasher.Write([]byte{0x01})
|
||
|
hasher.Write(left)
|
||
|
hasher.Write(right)
|
||
|
return hasher.Sum(nil)
|
||
|
}
|
||
|
|
||
|
type MerkleBuilder struct {
|
||
|
stack []ct.MerkleTreeNode
|
||
|
size uint64 // number of hashes added so far
|
||
|
}
|
||
|
|
||
|
func ResumedMerkleBuilder (hashes []ct.MerkleTreeNode, size uint64) *MerkleBuilder {
|
||
|
return &MerkleBuilder{
|
||
|
stack: hashes,
|
||
|
size: size,
|
||
|
}
|
||
|
}
|
||
|
|
||
|
func (builder *MerkleBuilder) Add (hash ct.MerkleTreeNode) {
|
||
|
builder.stack = append(builder.stack, hash)
|
||
|
builder.size++
|
||
|
size := builder.size
|
||
|
for size % 2 == 0 {
|
||
|
left, right := builder.stack[len(builder.stack)-2], builder.stack[len(builder.stack)-1]
|
||
|
builder.stack = builder.stack[:len(builder.stack)-2]
|
||
|
builder.stack = append(builder.stack, hashChildren(left, right))
|
||
|
size /= 2
|
||
|
}
|
||
|
}
|
||
|
|
||
|
func (builder *MerkleBuilder) Finish () ct.MerkleTreeNode {
|
||
|
if len(builder.stack) == 0 {
|
||
|
panic("MerkleBuilder.Finish called on an empty tree")
|
||
|
}
|
||
|
for len(builder.stack) > 1 {
|
||
|
left, right := builder.stack[len(builder.stack)-2], builder.stack[len(builder.stack)-1]
|
||
|
builder.stack = builder.stack[:len(builder.stack)-2]
|
||
|
builder.stack = append(builder.stack, hashChildren(left, right))
|
||
|
}
|
||
|
return builder.stack[0]
|
||
|
}
|