477 lines
13 KiB
Go
477 lines
13 KiB
Go
|
// Copyright 2011 The Go Authors. All rights reserved.
|
|||
|
// Use of this source code is governed by a BSD-style
|
|||
|
// license that can be found in the LICENSE file.
|
|||
|
|
|||
|
package x509
|
|||
|
|
|||
|
import (
|
|||
|
"fmt"
|
|||
|
"net"
|
|||
|
"runtime"
|
|||
|
"strings"
|
|||
|
"time"
|
|||
|
"unicode/utf8"
|
|||
|
)
|
|||
|
|
|||
|
type InvalidReason int
|
|||
|
|
|||
|
const (
|
|||
|
// NotAuthorizedToSign results when a certificate is signed by another
|
|||
|
// which isn't marked as a CA certificate.
|
|||
|
NotAuthorizedToSign InvalidReason = iota
|
|||
|
// Expired results when a certificate has expired, based on the time
|
|||
|
// given in the VerifyOptions.
|
|||
|
Expired
|
|||
|
// CANotAuthorizedForThisName results when an intermediate or root
|
|||
|
// certificate has a name constraint which doesn't include the name
|
|||
|
// being checked.
|
|||
|
CANotAuthorizedForThisName
|
|||
|
// TooManyIntermediates results when a path length constraint is
|
|||
|
// violated.
|
|||
|
TooManyIntermediates
|
|||
|
// IncompatibleUsage results when the certificate's key usage indicates
|
|||
|
// that it may only be used for a different purpose.
|
|||
|
IncompatibleUsage
|
|||
|
)
|
|||
|
|
|||
|
// CertificateInvalidError results when an odd error occurs. Users of this
|
|||
|
// library probably want to handle all these errors uniformly.
|
|||
|
type CertificateInvalidError struct {
|
|||
|
Cert *Certificate
|
|||
|
Reason InvalidReason
|
|||
|
}
|
|||
|
|
|||
|
func (e CertificateInvalidError) Error() string {
|
|||
|
switch e.Reason {
|
|||
|
case NotAuthorizedToSign:
|
|||
|
return "x509: certificate is not authorized to sign other certificates"
|
|||
|
case Expired:
|
|||
|
return "x509: certificate has expired or is not yet valid"
|
|||
|
case CANotAuthorizedForThisName:
|
|||
|
return "x509: a root or intermediate certificate is not authorized to sign in this domain"
|
|||
|
case TooManyIntermediates:
|
|||
|
return "x509: too many intermediates for path length constraint"
|
|||
|
case IncompatibleUsage:
|
|||
|
return "x509: certificate specifies an incompatible key usage"
|
|||
|
}
|
|||
|
return "x509: unknown error"
|
|||
|
}
|
|||
|
|
|||
|
// HostnameError results when the set of authorized names doesn't match the
|
|||
|
// requested name.
|
|||
|
type HostnameError struct {
|
|||
|
Certificate *Certificate
|
|||
|
Host string
|
|||
|
}
|
|||
|
|
|||
|
func (h HostnameError) Error() string {
|
|||
|
c := h.Certificate
|
|||
|
|
|||
|
var valid string
|
|||
|
if ip := net.ParseIP(h.Host); ip != nil {
|
|||
|
// Trying to validate an IP
|
|||
|
if len(c.IPAddresses) == 0 {
|
|||
|
return "x509: cannot validate certificate for " + h.Host + " because it doesn't contain any IP SANs"
|
|||
|
}
|
|||
|
for _, san := range c.IPAddresses {
|
|||
|
if len(valid) > 0 {
|
|||
|
valid += ", "
|
|||
|
}
|
|||
|
valid += san.String()
|
|||
|
}
|
|||
|
} else {
|
|||
|
if len(c.DNSNames) > 0 {
|
|||
|
valid = strings.Join(c.DNSNames, ", ")
|
|||
|
} else {
|
|||
|
valid = c.Subject.CommonName
|
|||
|
}
|
|||
|
}
|
|||
|
return "x509: certificate is valid for " + valid + ", not " + h.Host
|
|||
|
}
|
|||
|
|
|||
|
// UnknownAuthorityError results when the certificate issuer is unknown
|
|||
|
type UnknownAuthorityError struct {
|
|||
|
cert *Certificate
|
|||
|
// hintErr contains an error that may be helpful in determining why an
|
|||
|
// authority wasn't found.
|
|||
|
hintErr error
|
|||
|
// hintCert contains a possible authority certificate that was rejected
|
|||
|
// because of the error in hintErr.
|
|||
|
hintCert *Certificate
|
|||
|
}
|
|||
|
|
|||
|
func (e UnknownAuthorityError) Error() string {
|
|||
|
s := "x509: certificate signed by unknown authority"
|
|||
|
if e.hintErr != nil {
|
|||
|
certName := e.hintCert.Subject.CommonName
|
|||
|
if len(certName) == 0 {
|
|||
|
if len(e.hintCert.Subject.Organization) > 0 {
|
|||
|
certName = e.hintCert.Subject.Organization[0]
|
|||
|
}
|
|||
|
certName = "serial:" + e.hintCert.SerialNumber.String()
|
|||
|
}
|
|||
|
s += fmt.Sprintf(" (possibly because of %q while trying to verify candidate authority certificate %q)", e.hintErr, certName)
|
|||
|
}
|
|||
|
return s
|
|||
|
}
|
|||
|
|
|||
|
// SystemRootsError results when we fail to load the system root certificates.
|
|||
|
type SystemRootsError struct {
|
|||
|
}
|
|||
|
|
|||
|
func (e SystemRootsError) Error() string {
|
|||
|
return "x509: failed to load system roots and no roots provided"
|
|||
|
}
|
|||
|
|
|||
|
// VerifyOptions contains parameters for Certificate.Verify. It's a structure
|
|||
|
// because other PKIX verification APIs have ended up needing many options.
|
|||
|
type VerifyOptions struct {
|
|||
|
DNSName string
|
|||
|
Intermediates *CertPool
|
|||
|
Roots *CertPool // if nil, the system roots are used
|
|||
|
CurrentTime time.Time // if zero, the current time is used
|
|||
|
DisableTimeChecks bool
|
|||
|
// KeyUsage specifies which Extended Key Usage values are acceptable.
|
|||
|
// An empty list means ExtKeyUsageServerAuth. Key usage is considered a
|
|||
|
// constraint down the chain which mirrors Windows CryptoAPI behaviour,
|
|||
|
// but not the spec. To accept any key usage, include ExtKeyUsageAny.
|
|||
|
KeyUsages []ExtKeyUsage
|
|||
|
}
|
|||
|
|
|||
|
const (
|
|||
|
leafCertificate = iota
|
|||
|
intermediateCertificate
|
|||
|
rootCertificate
|
|||
|
)
|
|||
|
|
|||
|
// isValid performs validity checks on the c.
|
|||
|
func (c *Certificate) isValid(certType int, currentChain []*Certificate, opts *VerifyOptions) error {
|
|||
|
if !opts.DisableTimeChecks {
|
|||
|
now := opts.CurrentTime
|
|||
|
if now.IsZero() {
|
|||
|
now = time.Now()
|
|||
|
}
|
|||
|
if now.Before(c.NotBefore) || now.After(c.NotAfter) {
|
|||
|
return CertificateInvalidError{c, Expired}
|
|||
|
}
|
|||
|
}
|
|||
|
|
|||
|
if len(c.PermittedDNSDomains) > 0 {
|
|||
|
ok := false
|
|||
|
for _, domain := range c.PermittedDNSDomains {
|
|||
|
if opts.DNSName == domain ||
|
|||
|
(strings.HasSuffix(opts.DNSName, domain) &&
|
|||
|
len(opts.DNSName) >= 1+len(domain) &&
|
|||
|
opts.DNSName[len(opts.DNSName)-len(domain)-1] == '.') {
|
|||
|
ok = true
|
|||
|
break
|
|||
|
}
|
|||
|
}
|
|||
|
|
|||
|
if !ok {
|
|||
|
return CertificateInvalidError{c, CANotAuthorizedForThisName}
|
|||
|
}
|
|||
|
}
|
|||
|
|
|||
|
// KeyUsage status flags are ignored. From Engineering Security, Peter
|
|||
|
// Gutmann: A European government CA marked its signing certificates as
|
|||
|
// being valid for encryption only, but no-one noticed. Another
|
|||
|
// European CA marked its signature keys as not being valid for
|
|||
|
// signatures. A different CA marked its own trusted root certificate
|
|||
|
// as being invalid for certificate signing. Another national CA
|
|||
|
// distributed a certificate to be used to encrypt data for the
|
|||
|
// country’s tax authority that was marked as only being usable for
|
|||
|
// digital signatures but not for encryption. Yet another CA reversed
|
|||
|
// the order of the bit flags in the keyUsage due to confusion over
|
|||
|
// encoding endianness, essentially setting a random keyUsage in
|
|||
|
// certificates that it issued. Another CA created a self-invalidating
|
|||
|
// certificate by adding a certificate policy statement stipulating
|
|||
|
// that the certificate had to be used strictly as specified in the
|
|||
|
// keyUsage, and a keyUsage containing a flag indicating that the RSA
|
|||
|
// encryption key could only be used for Diffie-Hellman key agreement.
|
|||
|
|
|||
|
if certType == intermediateCertificate && (!c.BasicConstraintsValid || !c.IsCA) {
|
|||
|
return CertificateInvalidError{c, NotAuthorizedToSign}
|
|||
|
}
|
|||
|
|
|||
|
if c.BasicConstraintsValid && c.MaxPathLen >= 0 {
|
|||
|
numIntermediates := len(currentChain) - 1
|
|||
|
if numIntermediates > c.MaxPathLen {
|
|||
|
return CertificateInvalidError{c, TooManyIntermediates}
|
|||
|
}
|
|||
|
}
|
|||
|
|
|||
|
return nil
|
|||
|
}
|
|||
|
|
|||
|
// Verify attempts to verify c by building one or more chains from c to a
|
|||
|
// certificate in opts.Roots, using certificates in opts.Intermediates if
|
|||
|
// needed. If successful, it returns one or more chains where the first
|
|||
|
// element of the chain is c and the last element is from opts.Roots.
|
|||
|
//
|
|||
|
// WARNING: this doesn't do any revocation checking.
|
|||
|
func (c *Certificate) Verify(opts VerifyOptions) (chains [][]*Certificate, err error) {
|
|||
|
// Use Windows's own verification and chain building.
|
|||
|
if opts.Roots == nil && runtime.GOOS == "windows" {
|
|||
|
return c.systemVerify(&opts)
|
|||
|
}
|
|||
|
|
|||
|
if opts.Roots == nil {
|
|||
|
opts.Roots = systemRootsPool()
|
|||
|
if opts.Roots == nil {
|
|||
|
return nil, SystemRootsError{}
|
|||
|
}
|
|||
|
}
|
|||
|
|
|||
|
err = c.isValid(leafCertificate, nil, &opts)
|
|||
|
if err != nil {
|
|||
|
return
|
|||
|
}
|
|||
|
|
|||
|
if len(opts.DNSName) > 0 {
|
|||
|
err = c.VerifyHostname(opts.DNSName)
|
|||
|
if err != nil {
|
|||
|
return
|
|||
|
}
|
|||
|
}
|
|||
|
|
|||
|
candidateChains, err := c.buildChains(make(map[int][][]*Certificate), []*Certificate{c}, &opts)
|
|||
|
if err != nil {
|
|||
|
return
|
|||
|
}
|
|||
|
|
|||
|
keyUsages := opts.KeyUsages
|
|||
|
if len(keyUsages) == 0 {
|
|||
|
keyUsages = []ExtKeyUsage{ExtKeyUsageServerAuth}
|
|||
|
}
|
|||
|
|
|||
|
// If any key usage is acceptable then we're done.
|
|||
|
for _, usage := range keyUsages {
|
|||
|
if usage == ExtKeyUsageAny {
|
|||
|
chains = candidateChains
|
|||
|
return
|
|||
|
}
|
|||
|
}
|
|||
|
|
|||
|
for _, candidate := range candidateChains {
|
|||
|
if checkChainForKeyUsage(candidate, keyUsages) {
|
|||
|
chains = append(chains, candidate)
|
|||
|
}
|
|||
|
}
|
|||
|
|
|||
|
if len(chains) == 0 {
|
|||
|
err = CertificateInvalidError{c, IncompatibleUsage}
|
|||
|
}
|
|||
|
|
|||
|
return
|
|||
|
}
|
|||
|
|
|||
|
func appendToFreshChain(chain []*Certificate, cert *Certificate) []*Certificate {
|
|||
|
n := make([]*Certificate, len(chain)+1)
|
|||
|
copy(n, chain)
|
|||
|
n[len(chain)] = cert
|
|||
|
return n
|
|||
|
}
|
|||
|
|
|||
|
func (c *Certificate) buildChains(cache map[int][][]*Certificate, currentChain []*Certificate, opts *VerifyOptions) (chains [][]*Certificate, err error) {
|
|||
|
possibleRoots, failedRoot, rootErr := opts.Roots.findVerifiedParents(c)
|
|||
|
for _, rootNum := range possibleRoots {
|
|||
|
root := opts.Roots.certs[rootNum]
|
|||
|
err = root.isValid(rootCertificate, currentChain, opts)
|
|||
|
if err != nil {
|
|||
|
continue
|
|||
|
}
|
|||
|
chains = append(chains, appendToFreshChain(currentChain, root))
|
|||
|
}
|
|||
|
|
|||
|
possibleIntermediates, failedIntermediate, intermediateErr := opts.Intermediates.findVerifiedParents(c)
|
|||
|
nextIntermediate:
|
|||
|
for _, intermediateNum := range possibleIntermediates {
|
|||
|
intermediate := opts.Intermediates.certs[intermediateNum]
|
|||
|
for _, cert := range currentChain {
|
|||
|
if cert == intermediate {
|
|||
|
continue nextIntermediate
|
|||
|
}
|
|||
|
}
|
|||
|
err = intermediate.isValid(intermediateCertificate, currentChain, opts)
|
|||
|
if err != nil {
|
|||
|
continue
|
|||
|
}
|
|||
|
var childChains [][]*Certificate
|
|||
|
childChains, ok := cache[intermediateNum]
|
|||
|
if !ok {
|
|||
|
childChains, err = intermediate.buildChains(cache, appendToFreshChain(currentChain, intermediate), opts)
|
|||
|
cache[intermediateNum] = childChains
|
|||
|
}
|
|||
|
chains = append(chains, childChains...)
|
|||
|
}
|
|||
|
|
|||
|
if len(chains) > 0 {
|
|||
|
err = nil
|
|||
|
}
|
|||
|
|
|||
|
if len(chains) == 0 && err == nil {
|
|||
|
hintErr := rootErr
|
|||
|
hintCert := failedRoot
|
|||
|
if hintErr == nil {
|
|||
|
hintErr = intermediateErr
|
|||
|
hintCert = failedIntermediate
|
|||
|
}
|
|||
|
err = UnknownAuthorityError{c, hintErr, hintCert}
|
|||
|
}
|
|||
|
|
|||
|
return
|
|||
|
}
|
|||
|
|
|||
|
func matchHostnames(pattern, host string) bool {
|
|||
|
if len(pattern) == 0 || len(host) == 0 {
|
|||
|
return false
|
|||
|
}
|
|||
|
|
|||
|
patternParts := strings.Split(pattern, ".")
|
|||
|
hostParts := strings.Split(host, ".")
|
|||
|
|
|||
|
if len(patternParts) != len(hostParts) {
|
|||
|
return false
|
|||
|
}
|
|||
|
|
|||
|
for i, patternPart := range patternParts {
|
|||
|
if patternPart == "*" {
|
|||
|
continue
|
|||
|
}
|
|||
|
if patternPart != hostParts[i] {
|
|||
|
return false
|
|||
|
}
|
|||
|
}
|
|||
|
|
|||
|
return true
|
|||
|
}
|
|||
|
|
|||
|
// toLowerCaseASCII returns a lower-case version of in. See RFC 6125 6.4.1. We use
|
|||
|
// an explicitly ASCII function to avoid any sharp corners resulting from
|
|||
|
// performing Unicode operations on DNS labels.
|
|||
|
func toLowerCaseASCII(in string) string {
|
|||
|
// If the string is already lower-case then there's nothing to do.
|
|||
|
isAlreadyLowerCase := true
|
|||
|
for _, c := range in {
|
|||
|
if c == utf8.RuneError {
|
|||
|
// If we get a UTF-8 error then there might be
|
|||
|
// upper-case ASCII bytes in the invalid sequence.
|
|||
|
isAlreadyLowerCase = false
|
|||
|
break
|
|||
|
}
|
|||
|
if 'A' <= c && c <= 'Z' {
|
|||
|
isAlreadyLowerCase = false
|
|||
|
break
|
|||
|
}
|
|||
|
}
|
|||
|
|
|||
|
if isAlreadyLowerCase {
|
|||
|
return in
|
|||
|
}
|
|||
|
|
|||
|
out := []byte(in)
|
|||
|
for i, c := range out {
|
|||
|
if 'A' <= c && c <= 'Z' {
|
|||
|
out[i] += 'a' - 'A'
|
|||
|
}
|
|||
|
}
|
|||
|
return string(out)
|
|||
|
}
|
|||
|
|
|||
|
// VerifyHostname returns nil if c is a valid certificate for the named host.
|
|||
|
// Otherwise it returns an error describing the mismatch.
|
|||
|
func (c *Certificate) VerifyHostname(h string) error {
|
|||
|
// IP addresses may be written in [ ].
|
|||
|
candidateIP := h
|
|||
|
if len(h) >= 3 && h[0] == '[' && h[len(h)-1] == ']' {
|
|||
|
candidateIP = h[1 : len(h)-1]
|
|||
|
}
|
|||
|
if ip := net.ParseIP(candidateIP); ip != nil {
|
|||
|
// We only match IP addresses against IP SANs.
|
|||
|
// https://tools.ietf.org/html/rfc6125#appendix-B.2
|
|||
|
for _, candidate := range c.IPAddresses {
|
|||
|
if ip.Equal(candidate) {
|
|||
|
return nil
|
|||
|
}
|
|||
|
}
|
|||
|
return HostnameError{c, candidateIP}
|
|||
|
}
|
|||
|
|
|||
|
lowered := toLowerCaseASCII(h)
|
|||
|
|
|||
|
if len(c.DNSNames) > 0 {
|
|||
|
for _, match := range c.DNSNames {
|
|||
|
if matchHostnames(toLowerCaseASCII(match), lowered) {
|
|||
|
return nil
|
|||
|
}
|
|||
|
}
|
|||
|
// If Subject Alt Name is given, we ignore the common name.
|
|||
|
} else if matchHostnames(toLowerCaseASCII(c.Subject.CommonName), lowered) {
|
|||
|
return nil
|
|||
|
}
|
|||
|
|
|||
|
return HostnameError{c, h}
|
|||
|
}
|
|||
|
|
|||
|
func checkChainForKeyUsage(chain []*Certificate, keyUsages []ExtKeyUsage) bool {
|
|||
|
usages := make([]ExtKeyUsage, len(keyUsages))
|
|||
|
copy(usages, keyUsages)
|
|||
|
|
|||
|
if len(chain) == 0 {
|
|||
|
return false
|
|||
|
}
|
|||
|
|
|||
|
usagesRemaining := len(usages)
|
|||
|
|
|||
|
// We walk down the list and cross out any usages that aren't supported
|
|||
|
// by each certificate. If we cross out all the usages, then the chain
|
|||
|
// is unacceptable.
|
|||
|
|
|||
|
for i := len(chain) - 1; i >= 0; i-- {
|
|||
|
cert := chain[i]
|
|||
|
if len(cert.ExtKeyUsage) == 0 && len(cert.UnknownExtKeyUsage) == 0 {
|
|||
|
// The certificate doesn't have any extended key usage specified.
|
|||
|
continue
|
|||
|
}
|
|||
|
|
|||
|
for _, usage := range cert.ExtKeyUsage {
|
|||
|
if usage == ExtKeyUsageAny {
|
|||
|
// The certificate is explicitly good for any usage.
|
|||
|
continue
|
|||
|
}
|
|||
|
}
|
|||
|
|
|||
|
const invalidUsage ExtKeyUsage = -1
|
|||
|
|
|||
|
NextRequestedUsage:
|
|||
|
for i, requestedUsage := range usages {
|
|||
|
if requestedUsage == invalidUsage {
|
|||
|
continue
|
|||
|
}
|
|||
|
|
|||
|
for _, usage := range cert.ExtKeyUsage {
|
|||
|
if requestedUsage == usage {
|
|||
|
continue NextRequestedUsage
|
|||
|
} else if requestedUsage == ExtKeyUsageServerAuth &&
|
|||
|
(usage == ExtKeyUsageNetscapeServerGatedCrypto ||
|
|||
|
usage == ExtKeyUsageMicrosoftServerGatedCrypto) {
|
|||
|
// In order to support COMODO
|
|||
|
// certificate chains, we have to
|
|||
|
// accept Netscape or Microsoft SGC
|
|||
|
// usages as equal to ServerAuth.
|
|||
|
continue NextRequestedUsage
|
|||
|
}
|
|||
|
}
|
|||
|
|
|||
|
usages[i] = invalidUsage
|
|||
|
usagesRemaining--
|
|||
|
if usagesRemaining == 0 {
|
|||
|
return false
|
|||
|
}
|
|||
|
}
|
|||
|
}
|
|||
|
|
|||
|
return true
|
|||
|
}
|