certspotter/auditing.go

158 lines
4.4 KiB
Go

// Copyright (C) 2016 Opsmate, Inc.
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License, v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
//
// This software is distributed WITHOUT A WARRANTY OF ANY KIND.
// See the Mozilla Public License for details.
package certspotter
import (
"bytes"
"crypto/sha256"
"software.sslmate.com/src/certspotter/ct"
)
func reverseHashes(hashes []ct.MerkleTreeNode) {
for i := 0; i < len(hashes)/2; i++ {
j := len(hashes) - i - 1
hashes[i], hashes[j] = hashes[j], hashes[i]
}
}
func VerifyConsistencyProof(proof ct.ConsistencyProof, first *ct.SignedTreeHead, second *ct.SignedTreeHead) (bool, *MerkleTreeBuilder) {
if second.TreeSize < first.TreeSize {
// Can't be consistent if tree got smaller
return false, nil
}
if first.TreeSize == second.TreeSize {
return bytes.Equal(first.SHA256RootHash[:], second.SHA256RootHash[:]) && len(proof) == 0, nil
}
if first.TreeSize == 0 {
// The purpose of the consistency proof is to ensure the append-only
// nature of the tree; i.e. that the first tree is a "prefix" of the
// second tree. If the first tree is empty, then it's trivially a prefix
// of the second tree, so no proof is needed.
if len(proof) != 0 {
return false, nil
}
return true, &MerkleTreeBuilder{stack: []ct.MerkleTreeNode{}, size: 0}
}
// Guaranteed that 0 < first.TreeSize < second.TreeSize
node := first.TreeSize - 1
lastNode := second.TreeSize - 1
// While we're the right child, everything is in both trees, so move one level up.
for node%2 == 1 {
node /= 2
lastNode /= 2
}
var leftHashes []ct.MerkleTreeNode
var newHash ct.MerkleTreeNode
var oldHash ct.MerkleTreeNode
if node > 0 {
if len(proof) == 0 {
return false, nil
}
newHash = proof[0]
proof = proof[1:]
} else {
// The old tree was balanced, so we already know the first hash to use
newHash = first.SHA256RootHash[:]
}
oldHash = newHash
leftHashes = append(leftHashes, newHash)
for node > 0 {
if node%2 == 1 {
// node is a right child; left sibling exists in both trees
if len(proof) == 0 {
return false, nil
}
newHash = hashChildren(proof[0], newHash)
oldHash = hashChildren(proof[0], oldHash)
leftHashes = append(leftHashes, proof[0])
proof = proof[1:]
} else if node < lastNode {
// node is a left child; rigth sibling only exists in the new tree
if len(proof) == 0 {
return false, nil
}
newHash = hashChildren(newHash, proof[0])
proof = proof[1:]
} // else node == lastNode: node is a left child with no sibling in either tree
node /= 2
lastNode /= 2
}
if !bytes.Equal(oldHash, first.SHA256RootHash[:]) {
return false, nil
}
// If trees have different height, continue up the path to reach the new root
for lastNode > 0 {
if len(proof) == 0 {
return false, nil
}
newHash = hashChildren(newHash, proof[0])
proof = proof[1:]
lastNode /= 2
}
if !bytes.Equal(newHash, second.SHA256RootHash[:]) {
return false, nil
}
reverseHashes(leftHashes)
return true, &MerkleTreeBuilder{stack: leftHashes, size: first.TreeSize}
}
func hashLeaf(leafBytes []byte) ct.MerkleTreeNode {
hasher := sha256.New()
hasher.Write([]byte{0x00})
hasher.Write(leafBytes)
return hasher.Sum(nil)
}
func hashChildren(left ct.MerkleTreeNode, right ct.MerkleTreeNode) ct.MerkleTreeNode {
hasher := sha256.New()
hasher.Write([]byte{0x01})
hasher.Write(left)
hasher.Write(right)
return hasher.Sum(nil)
}
type MerkleTreeBuilder struct {
stack []ct.MerkleTreeNode
size uint64 // number of hashes added so far
}
func (builder *MerkleTreeBuilder) Add(hash ct.MerkleTreeNode) {
builder.stack = append(builder.stack, hash)
builder.size++
size := builder.size
for size%2 == 0 {
left, right := builder.stack[len(builder.stack)-2], builder.stack[len(builder.stack)-1]
builder.stack = builder.stack[:len(builder.stack)-2]
builder.stack = append(builder.stack, hashChildren(left, right))
size /= 2
}
}
func (builder *MerkleTreeBuilder) Finish() ct.MerkleTreeNode {
if len(builder.stack) == 0 {
panic("MerkleTreeBuilder.Finish called on an empty tree")
}
for len(builder.stack) > 1 {
left, right := builder.stack[len(builder.stack)-2], builder.stack[len(builder.stack)-1]
builder.stack = builder.stack[:len(builder.stack)-2]
builder.stack = append(builder.stack, hashChildren(left, right))
}
return builder.stack[0]
}