contrib: keygen-html for generating keys in the browser
Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
This commit is contained in:
		
							parent
							
								
									30cf5eb883
								
							
						
					
					
						commit
						bee819f289
					
				
							
								
								
									
										19
									
								
								contrib/keygen-html/README
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										19
									
								
								contrib/keygen-html/README
									
									
									
									
									
										Normal file
									
								
							@ -0,0 +1,19 @@
 | 
			
		||||
WireGuard Key Generation in JavaScript
 | 
			
		||||
======================================
 | 
			
		||||
 | 
			
		||||
Various people believe in JavaScript crypto, unfortunately. This small
 | 
			
		||||
example helps them fuel their poor taste.
 | 
			
		||||
 | 
			
		||||
It's possible to generate WireGuard keys (and thus configurations) in the
 | 
			
		||||
browser. The webpage here simulates talking to a server to exchange keys
 | 
			
		||||
and then generates a configuration file for the user to download.
 | 
			
		||||
 | 
			
		||||
Bugs
 | 
			
		||||
----
 | 
			
		||||
 | 
			
		||||
Who knows how emscripten actually compiles this and whether or not it
 | 
			
		||||
introduces interesting side-channel attacks.
 | 
			
		||||
 | 
			
		||||
Secrets aren't zerored after use. Maybe you can get around this with
 | 
			
		||||
some tricks taking advantage of browser allocator behavior and different
 | 
			
		||||
processes, but it seems pretty hard.
 | 
			
		||||
							
								
								
									
										16
									
								
								contrib/keygen-html/curve25519_generate.js
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										16
									
								
								contrib/keygen-html/curve25519_generate.js
									
									
									
									
									
										Normal file
									
								
							
										
											
												File diff suppressed because one or more lines are too long
											
										
									
								
							
							
								
								
									
										71
									
								
								contrib/keygen-html/keygen.html
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										71
									
								
								contrib/keygen-html/keygen.html
									
									
									
									
									
										Normal file
									
								
							@ -0,0 +1,71 @@
 | 
			
		||||
<script src="curve25519_generate.js"></script>
 | 
			
		||||
<script>
 | 
			
		||||
// License: GPLv2
 | 
			
		||||
function generateWireguardKeypair()
 | 
			
		||||
{
 | 
			
		||||
	var privateKey = Module._malloc(32);
 | 
			
		||||
	var publicKey = Module._malloc(32);
 | 
			
		||||
	Module._curve25519_generate_private(privateKey);
 | 
			
		||||
	Module._curve25519_generate_public(publicKey, privateKey);
 | 
			
		||||
	var privateBase64 = Module._malloc(45);
 | 
			
		||||
	var publicBase64 = Module._malloc(45);
 | 
			
		||||
	Module._key_to_base64(privateBase64, privateKey);
 | 
			
		||||
	Module._key_to_base64(publicBase64, publicKey);
 | 
			
		||||
	Module._free(privateKey);
 | 
			
		||||
	Module._free(publicKey);
 | 
			
		||||
	var keypair = {
 | 
			
		||||
		publicKey: Module.Pointer_stringify(publicBase64),
 | 
			
		||||
		privateKey: Module.Pointer_stringify(privateBase64)
 | 
			
		||||
	};
 | 
			
		||||
	Module._free(privateBase64);
 | 
			
		||||
	Module._free(publicBase64);
 | 
			
		||||
	return keypair;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
function sendPubkeyToServer(pubkey, username, password)
 | 
			
		||||
{
 | 
			
		||||
	alert("Sending " + username + ":" + password + " to server for new pubkey " + pubkey + "...");
 | 
			
		||||
 | 
			
		||||
	// send info to server
 | 
			
		||||
 | 
			
		||||
	var serverResponse = {
 | 
			
		||||
		publicKey: "6spHEFoJrp9pijbxjJoS6fHjZaAWQqtdFFO/OtpVe3w=",
 | 
			
		||||
		allowedIPs: [ "0.0.0.0/0", "::/0" ],
 | 
			
		||||
		endpoint: "demo.wireguard.com:63321",
 | 
			
		||||
		address: [ "192.168.18.42/32", "fd08:1234:1111::77/128" ],
 | 
			
		||||
		dns: [ "8.8.8.8", "8.8.4.4" ]
 | 
			
		||||
	}
 | 
			
		||||
 | 
			
		||||
	return serverResponse;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
function downloadNewConfiguration()
 | 
			
		||||
{
 | 
			
		||||
	var keypair = generateWireguardKeypair();
 | 
			
		||||
	var serverResponse = sendPubkeyToServer(keypair.publicKey, "zx2c4", "supersecretpassword");
 | 
			
		||||
 | 
			
		||||
	var config = [];
 | 
			
		||||
	config.push("[Interface]");
 | 
			
		||||
	config.push("PrivateKey = " + keypair.privateKey);
 | 
			
		||||
	config.push("Address = " + serverResponse.address.join(", "));
 | 
			
		||||
	config.push("DNS = " + serverResponse.dns.join(", "));
 | 
			
		||||
	config.push("");
 | 
			
		||||
	config.push("[Peer]");
 | 
			
		||||
	config.push("PublicKey = " + serverResponse.publicKey);
 | 
			
		||||
	config.push("AllowedIPs = " + serverResponse.allowedIPs.join(", "));
 | 
			
		||||
	config.push("Endpoint = " + serverResponse.endpoint);
 | 
			
		||||
	config.push("");
 | 
			
		||||
	config = config.join("\n");
 | 
			
		||||
 | 
			
		||||
	var blob = new Blob([config], { type: "text/plain" });
 | 
			
		||||
	var a = document.createElement("a");
 | 
			
		||||
	a.download = "demo0.conf";
 | 
			
		||||
	a.href = URL.createObjectURL(blob);
 | 
			
		||||
	a.style.display = "none";
 | 
			
		||||
	document.body.appendChild(a);
 | 
			
		||||
	a.click();
 | 
			
		||||
	document.body.removeChild(a);
 | 
			
		||||
}
 | 
			
		||||
</script>
 | 
			
		||||
 | 
			
		||||
<a href="javascript:downloadNewConfiguration()">Download a WireGuard configuration file</a>
 | 
			
		||||
							
								
								
									
										914
									
								
								contrib/keygen-html/src/curve25519_generate.c
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										914
									
								
								contrib/keygen-html/src/curve25519_generate.c
									
									
									
									
									
										Normal file
									
								
							@ -0,0 +1,914 @@
 | 
			
		||||
/* License: GPLv2 */
 | 
			
		||||
/* Build with emcc -O3 --memory-init-file 0 -o curve25519_generate.js curve25519_generate.c */
 | 
			
		||||
 | 
			
		||||
#include <emscripten.h>
 | 
			
		||||
 | 
			
		||||
typedef unsigned long long uint64_t;
 | 
			
		||||
typedef long long int64_t;
 | 
			
		||||
typedef int int32_t;
 | 
			
		||||
typedef unsigned int uint32_t;
 | 
			
		||||
typedef unsigned char uint8_t;
 | 
			
		||||
typedef int64_t limb;
 | 
			
		||||
 | 
			
		||||
/* Field element representation:
 | 
			
		||||
 *
 | 
			
		||||
 * Field elements are written as an array of signed, 64-bit limbs, least
 | 
			
		||||
 * significant first. The value of the field element is:
 | 
			
		||||
 *   x[0] + 2^26·x[1] + x^51·x[2] + 2^102·x[3] + ...
 | 
			
		||||
 *
 | 
			
		||||
 * i.e. the limbs are 26, 25, 26, 25, ... bits wide.
 | 
			
		||||
 */
 | 
			
		||||
 | 
			
		||||
/* Sum two numbers: output += in */
 | 
			
		||||
static void fsum(limb *output, const limb *in)
 | 
			
		||||
{
 | 
			
		||||
	unsigned int i;
 | 
			
		||||
 | 
			
		||||
	for (i = 0; i < 10; i += 2) {
 | 
			
		||||
		output[0 + i] = output[0 + i] + in[0 + i];
 | 
			
		||||
		output[1 + i] = output[1 + i] + in[1 + i];
 | 
			
		||||
	}
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
/* Find the difference of two numbers: output = in - output
 | 
			
		||||
 * (note the order of the arguments!).
 | 
			
		||||
 */
 | 
			
		||||
static void fdifference(limb *output, const limb *in)
 | 
			
		||||
{
 | 
			
		||||
	unsigned int i;
 | 
			
		||||
 | 
			
		||||
	for (i = 0; i < 10; ++i) {
 | 
			
		||||
		output[i] = in[i] - output[i];
 | 
			
		||||
	}
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
/* Multiply a number by a scalar: output = in * scalar */
 | 
			
		||||
static void fscalar_product(limb *output, const limb *in, const limb scalar)
 | 
			
		||||
{
 | 
			
		||||
	unsigned int i;
 | 
			
		||||
 | 
			
		||||
	for (i = 0; i < 10; ++i) {
 | 
			
		||||
		output[i] = in[i] * scalar;
 | 
			
		||||
	}
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
/* Multiply two numbers: output = in2 * in
 | 
			
		||||
 *
 | 
			
		||||
 * output must be distinct to both inputs. The inputs are reduced coefficient
 | 
			
		||||
 * form, the output is not.
 | 
			
		||||
 *
 | 
			
		||||
 * output[x] <= 14 * the largest product of the input limbs.
 | 
			
		||||
 */
 | 
			
		||||
static void fproduct(limb *output, const limb *in2, const limb *in)
 | 
			
		||||
{
 | 
			
		||||
	output[0] =	   ((limb) ((int32_t) in2[0])) * ((int32_t) in[0]);
 | 
			
		||||
	output[1] =	   ((limb) ((int32_t) in2[0])) * ((int32_t) in[1]) +
 | 
			
		||||
						((limb) ((int32_t) in2[1])) * ((int32_t) in[0]);
 | 
			
		||||
	output[2] =  2 *  ((limb) ((int32_t) in2[1])) * ((int32_t) in[1]) +
 | 
			
		||||
						((limb) ((int32_t) in2[0])) * ((int32_t) in[2]) +
 | 
			
		||||
						((limb) ((int32_t) in2[2])) * ((int32_t) in[0]);
 | 
			
		||||
	output[3] =	   ((limb) ((int32_t) in2[1])) * ((int32_t) in[2]) +
 | 
			
		||||
						((limb) ((int32_t) in2[2])) * ((int32_t) in[1]) +
 | 
			
		||||
						((limb) ((int32_t) in2[0])) * ((int32_t) in[3]) +
 | 
			
		||||
						((limb) ((int32_t) in2[3])) * ((int32_t) in[0]);
 | 
			
		||||
	output[4] =	   ((limb) ((int32_t) in2[2])) * ((int32_t) in[2]) +
 | 
			
		||||
					   2 * (((limb) ((int32_t) in2[1])) * ((int32_t) in[3]) +
 | 
			
		||||
						((limb) ((int32_t) in2[3])) * ((int32_t) in[1])) +
 | 
			
		||||
						((limb) ((int32_t) in2[0])) * ((int32_t) in[4]) +
 | 
			
		||||
						((limb) ((int32_t) in2[4])) * ((int32_t) in[0]);
 | 
			
		||||
	output[5] =	   ((limb) ((int32_t) in2[2])) * ((int32_t) in[3]) +
 | 
			
		||||
						((limb) ((int32_t) in2[3])) * ((int32_t) in[2]) +
 | 
			
		||||
						((limb) ((int32_t) in2[1])) * ((int32_t) in[4]) +
 | 
			
		||||
						((limb) ((int32_t) in2[4])) * ((int32_t) in[1]) +
 | 
			
		||||
						((limb) ((int32_t) in2[0])) * ((int32_t) in[5]) +
 | 
			
		||||
						((limb) ((int32_t) in2[5])) * ((int32_t) in[0]);
 | 
			
		||||
	output[6] =  2 * (((limb) ((int32_t) in2[3])) * ((int32_t) in[3]) +
 | 
			
		||||
						((limb) ((int32_t) in2[1])) * ((int32_t) in[5]) +
 | 
			
		||||
						((limb) ((int32_t) in2[5])) * ((int32_t) in[1])) +
 | 
			
		||||
						((limb) ((int32_t) in2[2])) * ((int32_t) in[4]) +
 | 
			
		||||
						((limb) ((int32_t) in2[4])) * ((int32_t) in[2]) +
 | 
			
		||||
						((limb) ((int32_t) in2[0])) * ((int32_t) in[6]) +
 | 
			
		||||
						((limb) ((int32_t) in2[6])) * ((int32_t) in[0]);
 | 
			
		||||
	output[7] =	   ((limb) ((int32_t) in2[3])) * ((int32_t) in[4]) +
 | 
			
		||||
						((limb) ((int32_t) in2[4])) * ((int32_t) in[3]) +
 | 
			
		||||
						((limb) ((int32_t) in2[2])) * ((int32_t) in[5]) +
 | 
			
		||||
						((limb) ((int32_t) in2[5])) * ((int32_t) in[2]) +
 | 
			
		||||
						((limb) ((int32_t) in2[1])) * ((int32_t) in[6]) +
 | 
			
		||||
						((limb) ((int32_t) in2[6])) * ((int32_t) in[1]) +
 | 
			
		||||
						((limb) ((int32_t) in2[0])) * ((int32_t) in[7]) +
 | 
			
		||||
						((limb) ((int32_t) in2[7])) * ((int32_t) in[0]);
 | 
			
		||||
	output[8] =	   ((limb) ((int32_t) in2[4])) * ((int32_t) in[4]) +
 | 
			
		||||
					   2 * (((limb) ((int32_t) in2[3])) * ((int32_t) in[5]) +
 | 
			
		||||
						((limb) ((int32_t) in2[5])) * ((int32_t) in[3]) +
 | 
			
		||||
						((limb) ((int32_t) in2[1])) * ((int32_t) in[7]) +
 | 
			
		||||
						((limb) ((int32_t) in2[7])) * ((int32_t) in[1])) +
 | 
			
		||||
						((limb) ((int32_t) in2[2])) * ((int32_t) in[6]) +
 | 
			
		||||
						((limb) ((int32_t) in2[6])) * ((int32_t) in[2]) +
 | 
			
		||||
						((limb) ((int32_t) in2[0])) * ((int32_t) in[8]) +
 | 
			
		||||
						((limb) ((int32_t) in2[8])) * ((int32_t) in[0]);
 | 
			
		||||
	output[9] =	   ((limb) ((int32_t) in2[4])) * ((int32_t) in[5]) +
 | 
			
		||||
						((limb) ((int32_t) in2[5])) * ((int32_t) in[4]) +
 | 
			
		||||
						((limb) ((int32_t) in2[3])) * ((int32_t) in[6]) +
 | 
			
		||||
						((limb) ((int32_t) in2[6])) * ((int32_t) in[3]) +
 | 
			
		||||
						((limb) ((int32_t) in2[2])) * ((int32_t) in[7]) +
 | 
			
		||||
						((limb) ((int32_t) in2[7])) * ((int32_t) in[2]) +
 | 
			
		||||
						((limb) ((int32_t) in2[1])) * ((int32_t) in[8]) +
 | 
			
		||||
						((limb) ((int32_t) in2[8])) * ((int32_t) in[1]) +
 | 
			
		||||
						((limb) ((int32_t) in2[0])) * ((int32_t) in[9]) +
 | 
			
		||||
						((limb) ((int32_t) in2[9])) * ((int32_t) in[0]);
 | 
			
		||||
	output[10] = 2 * (((limb) ((int32_t) in2[5])) * ((int32_t) in[5]) +
 | 
			
		||||
						((limb) ((int32_t) in2[3])) * ((int32_t) in[7]) +
 | 
			
		||||
						((limb) ((int32_t) in2[7])) * ((int32_t) in[3]) +
 | 
			
		||||
						((limb) ((int32_t) in2[1])) * ((int32_t) in[9]) +
 | 
			
		||||
						((limb) ((int32_t) in2[9])) * ((int32_t) in[1])) +
 | 
			
		||||
						((limb) ((int32_t) in2[4])) * ((int32_t) in[6]) +
 | 
			
		||||
						((limb) ((int32_t) in2[6])) * ((int32_t) in[4]) +
 | 
			
		||||
						((limb) ((int32_t) in2[2])) * ((int32_t) in[8]) +
 | 
			
		||||
						((limb) ((int32_t) in2[8])) * ((int32_t) in[2]);
 | 
			
		||||
	output[11] =	  ((limb) ((int32_t) in2[5])) * ((int32_t) in[6]) +
 | 
			
		||||
						((limb) ((int32_t) in2[6])) * ((int32_t) in[5]) +
 | 
			
		||||
						((limb) ((int32_t) in2[4])) * ((int32_t) in[7]) +
 | 
			
		||||
						((limb) ((int32_t) in2[7])) * ((int32_t) in[4]) +
 | 
			
		||||
						((limb) ((int32_t) in2[3])) * ((int32_t) in[8]) +
 | 
			
		||||
						((limb) ((int32_t) in2[8])) * ((int32_t) in[3]) +
 | 
			
		||||
						((limb) ((int32_t) in2[2])) * ((int32_t) in[9]) +
 | 
			
		||||
						((limb) ((int32_t) in2[9])) * ((int32_t) in[2]);
 | 
			
		||||
	output[12] =	  ((limb) ((int32_t) in2[6])) * ((int32_t) in[6]) +
 | 
			
		||||
					   2 * (((limb) ((int32_t) in2[5])) * ((int32_t) in[7]) +
 | 
			
		||||
						((limb) ((int32_t) in2[7])) * ((int32_t) in[5]) +
 | 
			
		||||
						((limb) ((int32_t) in2[3])) * ((int32_t) in[9]) +
 | 
			
		||||
						((limb) ((int32_t) in2[9])) * ((int32_t) in[3])) +
 | 
			
		||||
						((limb) ((int32_t) in2[4])) * ((int32_t) in[8]) +
 | 
			
		||||
						((limb) ((int32_t) in2[8])) * ((int32_t) in[4]);
 | 
			
		||||
	output[13] =	  ((limb) ((int32_t) in2[6])) * ((int32_t) in[7]) +
 | 
			
		||||
						((limb) ((int32_t) in2[7])) * ((int32_t) in[6]) +
 | 
			
		||||
						((limb) ((int32_t) in2[5])) * ((int32_t) in[8]) +
 | 
			
		||||
						((limb) ((int32_t) in2[8])) * ((int32_t) in[5]) +
 | 
			
		||||
						((limb) ((int32_t) in2[4])) * ((int32_t) in[9]) +
 | 
			
		||||
						((limb) ((int32_t) in2[9])) * ((int32_t) in[4]);
 | 
			
		||||
	output[14] = 2 * (((limb) ((int32_t) in2[7])) * ((int32_t) in[7]) +
 | 
			
		||||
						((limb) ((int32_t) in2[5])) * ((int32_t) in[9]) +
 | 
			
		||||
						((limb) ((int32_t) in2[9])) * ((int32_t) in[5])) +
 | 
			
		||||
						((limb) ((int32_t) in2[6])) * ((int32_t) in[8]) +
 | 
			
		||||
						((limb) ((int32_t) in2[8])) * ((int32_t) in[6]);
 | 
			
		||||
	output[15] =	  ((limb) ((int32_t) in2[7])) * ((int32_t) in[8]) +
 | 
			
		||||
						((limb) ((int32_t) in2[8])) * ((int32_t) in[7]) +
 | 
			
		||||
						((limb) ((int32_t) in2[6])) * ((int32_t) in[9]) +
 | 
			
		||||
						((limb) ((int32_t) in2[9])) * ((int32_t) in[6]);
 | 
			
		||||
	output[16] =	  ((limb) ((int32_t) in2[8])) * ((int32_t) in[8]) +
 | 
			
		||||
					   2 * (((limb) ((int32_t) in2[7])) * ((int32_t) in[9]) +
 | 
			
		||||
						((limb) ((int32_t) in2[9])) * ((int32_t) in[7]));
 | 
			
		||||
	output[17] =	  ((limb) ((int32_t) in2[8])) * ((int32_t) in[9]) +
 | 
			
		||||
						((limb) ((int32_t) in2[9])) * ((int32_t) in[8]);
 | 
			
		||||
	output[18] = 2 *  ((limb) ((int32_t) in2[9])) * ((int32_t) in[9]);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
/* Reduce a long form to a short form by taking the input mod 2^255 - 19.
 | 
			
		||||
 *
 | 
			
		||||
 * On entry: |output[i]| < 14*2^54
 | 
			
		||||
 * On exit: |output[0..8]| < 280*2^54
 | 
			
		||||
 */
 | 
			
		||||
static void freduce_degree(limb *output)
 | 
			
		||||
{
 | 
			
		||||
	/* Each of these shifts and adds ends up multiplying the value by 19.
 | 
			
		||||
	 *
 | 
			
		||||
	 * For output[0..8], the absolute entry value is < 14*2^54 and we add, at
 | 
			
		||||
	 * most, 19*14*2^54 thus, on exit, |output[0..8]| < 280*2^54.
 | 
			
		||||
	 */
 | 
			
		||||
	output[8] += output[18] << 4;
 | 
			
		||||
	output[8] += output[18] << 1;
 | 
			
		||||
	output[8] += output[18];
 | 
			
		||||
	output[7] += output[17] << 4;
 | 
			
		||||
	output[7] += output[17] << 1;
 | 
			
		||||
	output[7] += output[17];
 | 
			
		||||
	output[6] += output[16] << 4;
 | 
			
		||||
	output[6] += output[16] << 1;
 | 
			
		||||
	output[6] += output[16];
 | 
			
		||||
	output[5] += output[15] << 4;
 | 
			
		||||
	output[5] += output[15] << 1;
 | 
			
		||||
	output[5] += output[15];
 | 
			
		||||
	output[4] += output[14] << 4;
 | 
			
		||||
	output[4] += output[14] << 1;
 | 
			
		||||
	output[4] += output[14];
 | 
			
		||||
	output[3] += output[13] << 4;
 | 
			
		||||
	output[3] += output[13] << 1;
 | 
			
		||||
	output[3] += output[13];
 | 
			
		||||
	output[2] += output[12] << 4;
 | 
			
		||||
	output[2] += output[12] << 1;
 | 
			
		||||
	output[2] += output[12];
 | 
			
		||||
	output[1] += output[11] << 4;
 | 
			
		||||
	output[1] += output[11] << 1;
 | 
			
		||||
	output[1] += output[11];
 | 
			
		||||
	output[0] += output[10] << 4;
 | 
			
		||||
	output[0] += output[10] << 1;
 | 
			
		||||
	output[0] += output[10];
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
#if (-1 & 3) != 3
 | 
			
		||||
#error "This code only works on a two's complement system"
 | 
			
		||||
#endif
 | 
			
		||||
 | 
			
		||||
/* return v / 2^26, using only shifts and adds.
 | 
			
		||||
 *
 | 
			
		||||
 * On entry: v can take any value.
 | 
			
		||||
 */
 | 
			
		||||
static inline limb div_by_2_26(const limb v)
 | 
			
		||||
{
 | 
			
		||||
	/* High word of v; no shift needed. */
 | 
			
		||||
	const uint32_t highword = (uint32_t) (((uint64_t) v) >> 32);
 | 
			
		||||
	/* Set to all 1s if v was negative; else set to 0s. */
 | 
			
		||||
	const int32_t sign = ((int32_t) highword) >> 31;
 | 
			
		||||
	/* Set to 0x3ffffff if v was negative; else set to 0. */
 | 
			
		||||
	const int32_t roundoff = ((uint32_t) sign) >> 6;
 | 
			
		||||
	/* Should return v / (1<<26) */
 | 
			
		||||
	return (v + roundoff) >> 26;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
/* return v / (2^25), using only shifts and adds.
 | 
			
		||||
 *
 | 
			
		||||
 * On entry: v can take any value.
 | 
			
		||||
 */
 | 
			
		||||
static inline limb div_by_2_25(const limb v)
 | 
			
		||||
{
 | 
			
		||||
	/* High word of v; no shift needed*/
 | 
			
		||||
	const uint32_t highword = (uint32_t) (((uint64_t) v) >> 32);
 | 
			
		||||
	/* Set to all 1s if v was negative; else set to 0s. */
 | 
			
		||||
	const int32_t sign = ((int32_t) highword) >> 31;
 | 
			
		||||
	/* Set to 0x1ffffff if v was negative; else set to 0. */
 | 
			
		||||
	const int32_t roundoff = ((uint32_t) sign) >> 7;
 | 
			
		||||
	/* Should return v / (1<<25) */
 | 
			
		||||
	return (v + roundoff) >> 25;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
/* Reduce all coefficients of the short form input so that |x| < 2^26.
 | 
			
		||||
 *
 | 
			
		||||
 * On entry: |output[i]| < 280*2^54
 | 
			
		||||
 */
 | 
			
		||||
static void freduce_coefficients(limb *output)
 | 
			
		||||
{
 | 
			
		||||
	unsigned int i;
 | 
			
		||||
 | 
			
		||||
	output[10] = 0;
 | 
			
		||||
 | 
			
		||||
	for (i = 0; i < 10; i += 2) {
 | 
			
		||||
		limb over = div_by_2_26(output[i]);
 | 
			
		||||
		/* The entry condition (that |output[i]| < 280*2^54) means that over is, at
 | 
			
		||||
		 * most, 280*2^28 in the first iteration of this loop. This is added to the
 | 
			
		||||
		 * next limb and we can approximate the resulting bound of that limb by
 | 
			
		||||
		 * 281*2^54.
 | 
			
		||||
		 */
 | 
			
		||||
		output[i] -= over << 26;
 | 
			
		||||
		output[i+1] += over;
 | 
			
		||||
 | 
			
		||||
		/* For the first iteration, |output[i+1]| < 281*2^54, thus |over| <
 | 
			
		||||
		 * 281*2^29. When this is added to the next limb, the resulting bound can
 | 
			
		||||
		 * be approximated as 281*2^54.
 | 
			
		||||
		 *
 | 
			
		||||
		 * For subsequent iterations of the loop, 281*2^54 remains a conservative
 | 
			
		||||
		 * bound and no overflow occurs.
 | 
			
		||||
		 */
 | 
			
		||||
		over = div_by_2_25(output[i+1]);
 | 
			
		||||
		output[i+1] -= over << 25;
 | 
			
		||||
		output[i+2] += over;
 | 
			
		||||
	}
 | 
			
		||||
	/* Now |output[10]| < 281*2^29 and all other coefficients are reduced. */
 | 
			
		||||
	output[0] += output[10] << 4;
 | 
			
		||||
	output[0] += output[10] << 1;
 | 
			
		||||
	output[0] += output[10];
 | 
			
		||||
 | 
			
		||||
	output[10] = 0;
 | 
			
		||||
 | 
			
		||||
	/* Now output[1..9] are reduced, and |output[0]| < 2^26 + 19*281*2^29
 | 
			
		||||
	 * So |over| will be no more than 2^16.
 | 
			
		||||
	 */
 | 
			
		||||
	{
 | 
			
		||||
		limb over = div_by_2_26(output[0]);
 | 
			
		||||
 | 
			
		||||
		output[0] -= over << 26;
 | 
			
		||||
		output[1] += over;
 | 
			
		||||
	}
 | 
			
		||||
 | 
			
		||||
	/* Now output[0,2..9] are reduced, and |output[1]| < 2^25 + 2^16 < 2^26. The
 | 
			
		||||
	 * bound on |output[1]| is sufficient to meet our needs.
 | 
			
		||||
	 */
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
/* A helpful wrapper around fproduct: output = in * in2.
 | 
			
		||||
 *
 | 
			
		||||
 * On entry: |in[i]| < 2^27 and |in2[i]| < 2^27.
 | 
			
		||||
 *
 | 
			
		||||
 * output must be distinct to both inputs. The output is reduced degree
 | 
			
		||||
 * (indeed, one need only provide storage for 10 limbs) and |output[i]| < 2^26.
 | 
			
		||||
 */
 | 
			
		||||
static void fmul(limb *output, const limb *in, const limb *in2)
 | 
			
		||||
{
 | 
			
		||||
	limb t[19];
 | 
			
		||||
 | 
			
		||||
	fproduct(t, in, in2);
 | 
			
		||||
	/* |t[i]| < 14*2^54 */
 | 
			
		||||
	freduce_degree(t);
 | 
			
		||||
	freduce_coefficients(t);
 | 
			
		||||
	/* |t[i]| < 2^26 */
 | 
			
		||||
	__builtin_memcpy(output, t, sizeof(limb) * 10);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
/* Square a number: output = in**2
 | 
			
		||||
 *
 | 
			
		||||
 * output must be distinct from the input. The inputs are reduced coefficient
 | 
			
		||||
 * form, the output is not.
 | 
			
		||||
 *
 | 
			
		||||
 * output[x] <= 14 * the largest product of the input limbs.
 | 
			
		||||
 */
 | 
			
		||||
static void fsquare_inner(limb *output, const limb *in)
 | 
			
		||||
{
 | 
			
		||||
	output[0] =	   ((limb) ((int32_t) in[0])) * ((int32_t) in[0]);
 | 
			
		||||
	output[1] =  2 *  ((limb) ((int32_t) in[0])) * ((int32_t) in[1]);
 | 
			
		||||
	output[2] =  2 * (((limb) ((int32_t) in[1])) * ((int32_t) in[1]) +
 | 
			
		||||
						((limb) ((int32_t) in[0])) * ((int32_t) in[2]));
 | 
			
		||||
	output[3] =  2 * (((limb) ((int32_t) in[1])) * ((int32_t) in[2]) +
 | 
			
		||||
						((limb) ((int32_t) in[0])) * ((int32_t) in[3]));
 | 
			
		||||
	output[4] =	   ((limb) ((int32_t) in[2])) * ((int32_t) in[2]) +
 | 
			
		||||
					   4 *  ((limb) ((int32_t) in[1])) * ((int32_t) in[3]) +
 | 
			
		||||
					   2 *  ((limb) ((int32_t) in[0])) * ((int32_t) in[4]);
 | 
			
		||||
	output[5] =  2 * (((limb) ((int32_t) in[2])) * ((int32_t) in[3]) +
 | 
			
		||||
						((limb) ((int32_t) in[1])) * ((int32_t) in[4]) +
 | 
			
		||||
						((limb) ((int32_t) in[0])) * ((int32_t) in[5]));
 | 
			
		||||
	output[6] =  2 * (((limb) ((int32_t) in[3])) * ((int32_t) in[3]) +
 | 
			
		||||
						((limb) ((int32_t) in[2])) * ((int32_t) in[4]) +
 | 
			
		||||
						((limb) ((int32_t) in[0])) * ((int32_t) in[6]) +
 | 
			
		||||
					   2 *  ((limb) ((int32_t) in[1])) * ((int32_t) in[5]));
 | 
			
		||||
	output[7] =  2 * (((limb) ((int32_t) in[3])) * ((int32_t) in[4]) +
 | 
			
		||||
						((limb) ((int32_t) in[2])) * ((int32_t) in[5]) +
 | 
			
		||||
						((limb) ((int32_t) in[1])) * ((int32_t) in[6]) +
 | 
			
		||||
						((limb) ((int32_t) in[0])) * ((int32_t) in[7]));
 | 
			
		||||
	output[8] =	   ((limb) ((int32_t) in[4])) * ((int32_t) in[4]) +
 | 
			
		||||
					   2 * (((limb) ((int32_t) in[2])) * ((int32_t) in[6]) +
 | 
			
		||||
						((limb) ((int32_t) in[0])) * ((int32_t) in[8]) +
 | 
			
		||||
					   2 * (((limb) ((int32_t) in[1])) * ((int32_t) in[7]) +
 | 
			
		||||
						((limb) ((int32_t) in[3])) * ((int32_t) in[5])));
 | 
			
		||||
	output[9] =  2 * (((limb) ((int32_t) in[4])) * ((int32_t) in[5]) +
 | 
			
		||||
						((limb) ((int32_t) in[3])) * ((int32_t) in[6]) +
 | 
			
		||||
						((limb) ((int32_t) in[2])) * ((int32_t) in[7]) +
 | 
			
		||||
						((limb) ((int32_t) in[1])) * ((int32_t) in[8]) +
 | 
			
		||||
						((limb) ((int32_t) in[0])) * ((int32_t) in[9]));
 | 
			
		||||
	output[10] = 2 * (((limb) ((int32_t) in[5])) * ((int32_t) in[5]) +
 | 
			
		||||
						((limb) ((int32_t) in[4])) * ((int32_t) in[6]) +
 | 
			
		||||
						((limb) ((int32_t) in[2])) * ((int32_t) in[8]) +
 | 
			
		||||
					   2 * (((limb) ((int32_t) in[3])) * ((int32_t) in[7]) +
 | 
			
		||||
						((limb) ((int32_t) in[1])) * ((int32_t) in[9])));
 | 
			
		||||
	output[11] = 2 * (((limb) ((int32_t) in[5])) * ((int32_t) in[6]) +
 | 
			
		||||
						((limb) ((int32_t) in[4])) * ((int32_t) in[7]) +
 | 
			
		||||
						((limb) ((int32_t) in[3])) * ((int32_t) in[8]) +
 | 
			
		||||
						((limb) ((int32_t) in[2])) * ((int32_t) in[9]));
 | 
			
		||||
	output[12] =	  ((limb) ((int32_t) in[6])) * ((int32_t) in[6]) +
 | 
			
		||||
					   2 * (((limb) ((int32_t) in[4])) * ((int32_t) in[8]) +
 | 
			
		||||
					   2 * (((limb) ((int32_t) in[5])) * ((int32_t) in[7]) +
 | 
			
		||||
						((limb) ((int32_t) in[3])) * ((int32_t) in[9])));
 | 
			
		||||
	output[13] = 2 * (((limb) ((int32_t) in[6])) * ((int32_t) in[7]) +
 | 
			
		||||
						((limb) ((int32_t) in[5])) * ((int32_t) in[8]) +
 | 
			
		||||
						((limb) ((int32_t) in[4])) * ((int32_t) in[9]));
 | 
			
		||||
	output[14] = 2 * (((limb) ((int32_t) in[7])) * ((int32_t) in[7]) +
 | 
			
		||||
						((limb) ((int32_t) in[6])) * ((int32_t) in[8]) +
 | 
			
		||||
					   2 *  ((limb) ((int32_t) in[5])) * ((int32_t) in[9]));
 | 
			
		||||
	output[15] = 2 * (((limb) ((int32_t) in[7])) * ((int32_t) in[8]) +
 | 
			
		||||
						((limb) ((int32_t) in[6])) * ((int32_t) in[9]));
 | 
			
		||||
	output[16] =	  ((limb) ((int32_t) in[8])) * ((int32_t) in[8]) +
 | 
			
		||||
					   4 *  ((limb) ((int32_t) in[7])) * ((int32_t) in[9]);
 | 
			
		||||
	output[17] = 2 *  ((limb) ((int32_t) in[8])) * ((int32_t) in[9]);
 | 
			
		||||
	output[18] = 2 *  ((limb) ((int32_t) in[9])) * ((int32_t) in[9]);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
/* fsquare sets output = in^2.
 | 
			
		||||
 *
 | 
			
		||||
 * On entry: The |in| argument is in reduced coefficients form and |in[i]| <
 | 
			
		||||
 * 2^27.
 | 
			
		||||
 *
 | 
			
		||||
 * On exit: The |output| argument is in reduced coefficients form (indeed, one
 | 
			
		||||
 * need only provide storage for 10 limbs) and |out[i]| < 2^26.
 | 
			
		||||
 */
 | 
			
		||||
static void fsquare(limb *output, const limb *in)
 | 
			
		||||
{
 | 
			
		||||
	limb t[19];
 | 
			
		||||
 | 
			
		||||
	fsquare_inner(t, in);
 | 
			
		||||
	/* |t[i]| < 14*2^54 because the largest product of two limbs will be <
 | 
			
		||||
	 * 2^(27+27) and fsquare_inner adds together, at most, 14 of those
 | 
			
		||||
	 * products.
 | 
			
		||||
	 */
 | 
			
		||||
	freduce_degree(t);
 | 
			
		||||
	freduce_coefficients(t);
 | 
			
		||||
	/* |t[i]| < 2^26 */
 | 
			
		||||
	__builtin_memcpy(output, t, sizeof(limb) * 10);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
/* Take a little-endian, 32-byte number and expand it into polynomial form */
 | 
			
		||||
static void fexpand(limb *output, const uint8_t *input)
 | 
			
		||||
{
 | 
			
		||||
#define F(n, start, shift, mask) \
 | 
			
		||||
	output[n] = ((((limb) input[start + 0]) | \
 | 
			
		||||
			  ((limb) input[start + 1]) << 8 | \
 | 
			
		||||
			  ((limb) input[start + 2]) << 16 | \
 | 
			
		||||
			  ((limb) input[start + 3]) << 24) >> shift) & mask;
 | 
			
		||||
	F(0, 0, 0, 0x3ffffff);
 | 
			
		||||
	F(1, 3, 2, 0x1ffffff);
 | 
			
		||||
	F(2, 6, 3, 0x3ffffff);
 | 
			
		||||
	F(3, 9, 5, 0x1ffffff);
 | 
			
		||||
	F(4, 12, 6, 0x3ffffff);
 | 
			
		||||
	F(5, 16, 0, 0x1ffffff);
 | 
			
		||||
	F(6, 19, 1, 0x3ffffff);
 | 
			
		||||
	F(7, 22, 3, 0x1ffffff);
 | 
			
		||||
	F(8, 25, 4, 0x3ffffff);
 | 
			
		||||
	F(9, 28, 6, 0x1ffffff);
 | 
			
		||||
#undef F
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
#if (-32 >> 1) != -16
 | 
			
		||||
#error "This code only works when >> does sign-extension on negative numbers"
 | 
			
		||||
#endif
 | 
			
		||||
 | 
			
		||||
/* int32_t_eq returns 0xffffffff iff a == b and zero otherwise. */
 | 
			
		||||
static int32_t int32_t_eq(int32_t a, int32_t b)
 | 
			
		||||
{
 | 
			
		||||
	a = ~(a ^ b);
 | 
			
		||||
	a &= a << 16;
 | 
			
		||||
	a &= a << 8;
 | 
			
		||||
	a &= a << 4;
 | 
			
		||||
	a &= a << 2;
 | 
			
		||||
	a &= a << 1;
 | 
			
		||||
	return a >> 31;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
/* int32_t_gte returns 0xffffffff if a >= b and zero otherwise, where a and b are
 | 
			
		||||
 * both non-negative.
 | 
			
		||||
 */
 | 
			
		||||
static int32_t int32_t_gte(int32_t a, int32_t b)
 | 
			
		||||
{
 | 
			
		||||
	a -= b;
 | 
			
		||||
	/* a >= 0 iff a >= b. */
 | 
			
		||||
	return ~(a >> 31);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
/* Take a fully reduced polynomial form number and contract it into a
 | 
			
		||||
 * little-endian, 32-byte array.
 | 
			
		||||
 *
 | 
			
		||||
 * On entry: |input_limbs[i]| < 2^26
 | 
			
		||||
 */
 | 
			
		||||
static void fcontract(uint8_t *output, limb *input_limbs)
 | 
			
		||||
{
 | 
			
		||||
	int i;
 | 
			
		||||
	int j;
 | 
			
		||||
	int32_t input[10];
 | 
			
		||||
	int32_t mask;
 | 
			
		||||
 | 
			
		||||
	/* |input_limbs[i]| < 2^26, so it's valid to convert to an int32_t. */
 | 
			
		||||
	for (i = 0; i < 10; i++) {
 | 
			
		||||
		input[i] = input_limbs[i];
 | 
			
		||||
	}
 | 
			
		||||
 | 
			
		||||
	for (j = 0; j < 2; ++j) {
 | 
			
		||||
		for (i = 0; i < 9; ++i) {
 | 
			
		||||
			if ((i & 1) == 1) {
 | 
			
		||||
				/* This calculation is a time-invariant way to make input[i]
 | 
			
		||||
				 * non-negative by borrowing from the next-larger limb.
 | 
			
		||||
				 */
 | 
			
		||||
				const int32_t mask = input[i] >> 31;
 | 
			
		||||
				const int32_t carry = -((input[i] & mask) >> 25);
 | 
			
		||||
 | 
			
		||||
				input[i] = input[i] + (carry << 25);
 | 
			
		||||
				input[i+1] = input[i+1] - carry;
 | 
			
		||||
			} else {
 | 
			
		||||
				const int32_t mask = input[i] >> 31;
 | 
			
		||||
				const int32_t carry = -((input[i] & mask) >> 26);
 | 
			
		||||
 | 
			
		||||
				input[i] = input[i] + (carry << 26);
 | 
			
		||||
				input[i+1] = input[i+1] - carry;
 | 
			
		||||
			}
 | 
			
		||||
		}
 | 
			
		||||
 | 
			
		||||
		/* There's no greater limb for input[9] to borrow from, but we can multiply
 | 
			
		||||
		 * by 19 and borrow from input[0], which is valid mod 2^255-19.
 | 
			
		||||
		 */
 | 
			
		||||
		{
 | 
			
		||||
			const int32_t mask = input[9] >> 31;
 | 
			
		||||
			const int32_t carry = -((input[9] & mask) >> 25);
 | 
			
		||||
 | 
			
		||||
			input[9] = input[9] + (carry << 25);
 | 
			
		||||
			input[0] = input[0] - (carry * 19);
 | 
			
		||||
		}
 | 
			
		||||
 | 
			
		||||
		/* After the first iteration, input[1..9] are non-negative and fit within
 | 
			
		||||
		 * 25 or 26 bits, depending on position. However, input[0] may be
 | 
			
		||||
		 * negative.
 | 
			
		||||
		 */
 | 
			
		||||
	}
 | 
			
		||||
 | 
			
		||||
	/* The first borrow-propagation pass above ended with every limb
 | 
			
		||||
		 except (possibly) input[0] non-negative.
 | 
			
		||||
		 If input[0] was negative after the first pass, then it was because of a
 | 
			
		||||
		 carry from input[9]. On entry, input[9] < 2^26 so the carry was, at most,
 | 
			
		||||
		 one, since (2**26-1) >> 25 = 1. Thus input[0] >= -19.
 | 
			
		||||
		 In the second pass, each limb is decreased by at most one. Thus the second
 | 
			
		||||
		 borrow-propagation pass could only have wrapped around to decrease
 | 
			
		||||
		 input[0] again if the first pass left input[0] negative *and* input[1]
 | 
			
		||||
		 through input[9] were all zero.  In that case, input[1] is now 2^25 - 1,
 | 
			
		||||
		 and this last borrow-propagation step will leave input[1] non-negative. */
 | 
			
		||||
	{
 | 
			
		||||
		const int32_t mask = input[0] >> 31;
 | 
			
		||||
		const int32_t carry = -((input[0] & mask) >> 26);
 | 
			
		||||
 | 
			
		||||
		input[0] = input[0] + (carry << 26);
 | 
			
		||||
		input[1] = input[1] - carry;
 | 
			
		||||
	}
 | 
			
		||||
 | 
			
		||||
	/* All input[i] are now non-negative. However, there might be values between
 | 
			
		||||
	 * 2^25 and 2^26 in a limb which is, nominally, 25 bits wide.
 | 
			
		||||
	 */
 | 
			
		||||
	for (j = 0; j < 2; j++) {
 | 
			
		||||
		for (i = 0; i < 9; i++) {
 | 
			
		||||
			if ((i & 1) == 1) {
 | 
			
		||||
				const int32_t carry = input[i] >> 25;
 | 
			
		||||
 | 
			
		||||
				input[i] &= 0x1ffffff;
 | 
			
		||||
				input[i+1] += carry;
 | 
			
		||||
			} else {
 | 
			
		||||
				const int32_t carry = input[i] >> 26;
 | 
			
		||||
 | 
			
		||||
				input[i] &= 0x3ffffff;
 | 
			
		||||
				input[i+1] += carry;
 | 
			
		||||
			}
 | 
			
		||||
		}
 | 
			
		||||
 | 
			
		||||
		{
 | 
			
		||||
			const int32_t carry = input[9] >> 25;
 | 
			
		||||
 | 
			
		||||
			input[9] &= 0x1ffffff;
 | 
			
		||||
			input[0] += 19*carry;
 | 
			
		||||
		}
 | 
			
		||||
	}
 | 
			
		||||
 | 
			
		||||
	/* If the first carry-chain pass, just above, ended up with a carry from
 | 
			
		||||
	 * input[9], and that caused input[0] to be out-of-bounds, then input[0] was
 | 
			
		||||
	 * < 2^26 + 2*19, because the carry was, at most, two.
 | 
			
		||||
	 *
 | 
			
		||||
	 * If the second pass carried from input[9] again then input[0] is < 2*19 and
 | 
			
		||||
	 * the input[9] -> input[0] carry didn't push input[0] out of bounds.
 | 
			
		||||
	 */
 | 
			
		||||
 | 
			
		||||
	/* It still remains the case that input might be between 2^255-19 and 2^255.
 | 
			
		||||
	 * In this case, input[1..9] must take their maximum value and input[0] must
 | 
			
		||||
	 * be >= (2^255-19) & 0x3ffffff, which is 0x3ffffed.
 | 
			
		||||
	 */
 | 
			
		||||
	mask = int32_t_gte(input[0], 0x3ffffed);
 | 
			
		||||
	for (i = 1; i < 10; i++) {
 | 
			
		||||
		if ((i & 1) == 1) {
 | 
			
		||||
			mask &= int32_t_eq(input[i], 0x1ffffff);
 | 
			
		||||
		} else {
 | 
			
		||||
			mask &= int32_t_eq(input[i], 0x3ffffff);
 | 
			
		||||
		}
 | 
			
		||||
	}
 | 
			
		||||
 | 
			
		||||
	/* mask is either 0xffffffff (if input >= 2^255-19) and zero otherwise. Thus
 | 
			
		||||
	 * this conditionally subtracts 2^255-19.
 | 
			
		||||
	 */
 | 
			
		||||
	input[0] -= mask & 0x3ffffed;
 | 
			
		||||
 | 
			
		||||
	for (i = 1; i < 10; i++) {
 | 
			
		||||
		if ((i & 1) == 1) {
 | 
			
		||||
			input[i] -= mask & 0x1ffffff;
 | 
			
		||||
		} else {
 | 
			
		||||
			input[i] -= mask & 0x3ffffff;
 | 
			
		||||
		}
 | 
			
		||||
	}
 | 
			
		||||
 | 
			
		||||
	input[1] <<= 2;
 | 
			
		||||
	input[2] <<= 3;
 | 
			
		||||
	input[3] <<= 5;
 | 
			
		||||
	input[4] <<= 6;
 | 
			
		||||
	input[6] <<= 1;
 | 
			
		||||
	input[7] <<= 3;
 | 
			
		||||
	input[8] <<= 4;
 | 
			
		||||
	input[9] <<= 6;
 | 
			
		||||
#define F(i, s) \
 | 
			
		||||
	output[s+0] |=  input[i] & 0xff; \
 | 
			
		||||
	output[s+1]  = (input[i] >> 8) & 0xff; \
 | 
			
		||||
	output[s+2]  = (input[i] >> 16) & 0xff; \
 | 
			
		||||
	output[s+3]  = (input[i] >> 24) & 0xff;
 | 
			
		||||
	output[0] = 0;
 | 
			
		||||
	output[16] = 0;
 | 
			
		||||
	F(0, 0);
 | 
			
		||||
	F(1, 3);
 | 
			
		||||
	F(2, 6);
 | 
			
		||||
	F(3, 9);
 | 
			
		||||
	F(4, 12);
 | 
			
		||||
	F(5, 16);
 | 
			
		||||
	F(6, 19);
 | 
			
		||||
	F(7, 22);
 | 
			
		||||
	F(8, 25);
 | 
			
		||||
	F(9, 28);
 | 
			
		||||
#undef F
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
/* Input: Q, Q', Q-Q'
 | 
			
		||||
 * Output: 2Q, Q+Q'
 | 
			
		||||
 *
 | 
			
		||||
 *   x2 z3: long form
 | 
			
		||||
 *   x3 z3: long form
 | 
			
		||||
 *   x z: short form, destroyed
 | 
			
		||||
 *   xprime zprime: short form, destroyed
 | 
			
		||||
 *   qmqp: short form, preserved
 | 
			
		||||
 *
 | 
			
		||||
 * On entry and exit, the absolute value of the limbs of all inputs and outputs
 | 
			
		||||
 * are < 2^26.
 | 
			
		||||
 */
 | 
			
		||||
static void fmonty(limb *x2, limb *z2,  /* output 2Q */
 | 
			
		||||
		   limb *x3, limb *z3,  /* output Q + Q' */
 | 
			
		||||
		   limb *x, limb *z,	/* input Q */
 | 
			
		||||
		   limb *xprime, limb *zprime,  /* input Q' */
 | 
			
		||||
 | 
			
		||||
		   const limb *qmqp /* input Q - Q' */)
 | 
			
		||||
{
 | 
			
		||||
	limb origx[10], origxprime[10], zzz[19], xx[19], zz[19], xxprime[19],
 | 
			
		||||
				zzprime[19], zzzprime[19], xxxprime[19];
 | 
			
		||||
 | 
			
		||||
	__builtin_memcpy(origx, x, 10 * sizeof(limb));
 | 
			
		||||
	fsum(x, z);
 | 
			
		||||
	/* |x[i]| < 2^27 */
 | 
			
		||||
	fdifference(z, origx);  /* does x - z */
 | 
			
		||||
	/* |z[i]| < 2^27 */
 | 
			
		||||
 | 
			
		||||
	__builtin_memcpy(origxprime, xprime, sizeof(limb) * 10);
 | 
			
		||||
	fsum(xprime, zprime);
 | 
			
		||||
	/* |xprime[i]| < 2^27 */
 | 
			
		||||
	fdifference(zprime, origxprime);
 | 
			
		||||
	/* |zprime[i]| < 2^27 */
 | 
			
		||||
	fproduct(xxprime, xprime, z);
 | 
			
		||||
	/* |xxprime[i]| < 14*2^54: the largest product of two limbs will be <
 | 
			
		||||
	 * 2^(27+27) and fproduct adds together, at most, 14 of those products.
 | 
			
		||||
	 * (Approximating that to 2^58 doesn't work out.)
 | 
			
		||||
	 */
 | 
			
		||||
	fproduct(zzprime, x, zprime);
 | 
			
		||||
	/* |zzprime[i]| < 14*2^54 */
 | 
			
		||||
	freduce_degree(xxprime);
 | 
			
		||||
	freduce_coefficients(xxprime);
 | 
			
		||||
	/* |xxprime[i]| < 2^26 */
 | 
			
		||||
	freduce_degree(zzprime);
 | 
			
		||||
	freduce_coefficients(zzprime);
 | 
			
		||||
	/* |zzprime[i]| < 2^26 */
 | 
			
		||||
	__builtin_memcpy(origxprime, xxprime, sizeof(limb) * 10);
 | 
			
		||||
	fsum(xxprime, zzprime);
 | 
			
		||||
	/* |xxprime[i]| < 2^27 */
 | 
			
		||||
	fdifference(zzprime, origxprime);
 | 
			
		||||
	/* |zzprime[i]| < 2^27 */
 | 
			
		||||
	fsquare(xxxprime, xxprime);
 | 
			
		||||
	/* |xxxprime[i]| < 2^26 */
 | 
			
		||||
	fsquare(zzzprime, zzprime);
 | 
			
		||||
	/* |zzzprime[i]| < 2^26 */
 | 
			
		||||
	fproduct(zzprime, zzzprime, qmqp);
 | 
			
		||||
	/* |zzprime[i]| < 14*2^52 */
 | 
			
		||||
	freduce_degree(zzprime);
 | 
			
		||||
	freduce_coefficients(zzprime);
 | 
			
		||||
	/* |zzprime[i]| < 2^26 */
 | 
			
		||||
	__builtin_memcpy(x3, xxxprime, sizeof(limb) * 10);
 | 
			
		||||
	__builtin_memcpy(z3, zzprime, sizeof(limb) * 10);
 | 
			
		||||
 | 
			
		||||
	fsquare(xx, x);
 | 
			
		||||
	/* |xx[i]| < 2^26 */
 | 
			
		||||
	fsquare(zz, z);
 | 
			
		||||
	/* |zz[i]| < 2^26 */
 | 
			
		||||
	fproduct(x2, xx, zz);
 | 
			
		||||
	/* |x2[i]| < 14*2^52 */
 | 
			
		||||
	freduce_degree(x2);
 | 
			
		||||
	freduce_coefficients(x2);
 | 
			
		||||
	/* |x2[i]| < 2^26 */
 | 
			
		||||
	fdifference(zz, xx);  // does zz = xx - zz
 | 
			
		||||
	/* |zz[i]| < 2^27 */
 | 
			
		||||
	__builtin_memset(zzz + 10, 0, sizeof(limb) * 9);
 | 
			
		||||
	fscalar_product(zzz, zz, 121665);
 | 
			
		||||
	/* |zzz[i]| < 2^(27+17) */
 | 
			
		||||
	/* No need to call freduce_degree here:
 | 
			
		||||
		 fscalar_product doesn't increase the degree of its input. */
 | 
			
		||||
	freduce_coefficients(zzz);
 | 
			
		||||
	/* |zzz[i]| < 2^26 */
 | 
			
		||||
	fsum(zzz, xx);
 | 
			
		||||
	/* |zzz[i]| < 2^27 */
 | 
			
		||||
	fproduct(z2, zz, zzz);
 | 
			
		||||
	/* |z2[i]| < 14*2^(26+27) */
 | 
			
		||||
	freduce_degree(z2);
 | 
			
		||||
	freduce_coefficients(z2);
 | 
			
		||||
	/* |z2|i| < 2^26 */
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
/* Conditionally swap two reduced-form limb arrays if 'iswap' is 1, but leave
 | 
			
		||||
 * them unchanged if 'iswap' is 0.  Runs in data-invariant time to avoid
 | 
			
		||||
 * side-channel attacks.
 | 
			
		||||
 *
 | 
			
		||||
 * NOTE that this function requires that 'iswap' be 1 or 0; other values give
 | 
			
		||||
 * wrong results.  Also, the two limb arrays must be in reduced-coefficient,
 | 
			
		||||
 * reduced-degree form: the values in a[10..19] or b[10..19] aren't swapped,
 | 
			
		||||
 * and all all values in a[0..9],b[0..9] must have magnitude less than
 | 
			
		||||
 * INT32_MAX.
 | 
			
		||||
 */
 | 
			
		||||
static void swap_conditional(limb a[static 19], limb b[static 19], limb iswap)
 | 
			
		||||
{
 | 
			
		||||
	unsigned int i;
 | 
			
		||||
	const int32_t swap = (int32_t) -iswap;
 | 
			
		||||
 | 
			
		||||
	for (i = 0; i < 10; ++i) {
 | 
			
		||||
		const int32_t x = swap & (((int32_t)a[i]) ^ ((int32_t)b[i]));
 | 
			
		||||
 | 
			
		||||
		a[i] = ((int32_t)a[i]) ^ x;
 | 
			
		||||
		b[i] = ((int32_t)b[i]) ^ x;
 | 
			
		||||
	}
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
/* Calculates nQ where Q is the x-coordinate of a point on the curve
 | 
			
		||||
 *
 | 
			
		||||
 *   resultx/resultz: the x coordinate of the resulting curve point (short form)
 | 
			
		||||
 *   n: a little endian, 32-byte number
 | 
			
		||||
 *   q: a point of the curve (short form)
 | 
			
		||||
 */
 | 
			
		||||
static void cmult(limb *resultx, limb *resultz, const uint8_t *n, const limb *q)
 | 
			
		||||
{
 | 
			
		||||
	limb a[19] = {0}, b[19] = {1}, c[19] = {1}, d[19] = {0};
 | 
			
		||||
	limb *nqpqx = a, *nqpqz = b, *nqx = c, *nqz = d, *t;
 | 
			
		||||
	limb e[19] = {0}, f[19] = {1}, g[19] = {0}, h[19] = {1};
 | 
			
		||||
	limb *nqpqx2 = e, *nqpqz2 = f, *nqx2 = g, *nqz2 = h;
 | 
			
		||||
 | 
			
		||||
	unsigned int i, j;
 | 
			
		||||
 | 
			
		||||
	__builtin_memcpy(nqpqx, q, sizeof(limb) * 10);
 | 
			
		||||
 | 
			
		||||
	for (i = 0; i < 32; ++i) {
 | 
			
		||||
		uint8_t byte = n[31 - i];
 | 
			
		||||
 | 
			
		||||
		for (j = 0; j < 8; ++j) {
 | 
			
		||||
			const limb bit = byte >> 7;
 | 
			
		||||
 | 
			
		||||
			swap_conditional(nqx, nqpqx, bit);
 | 
			
		||||
			swap_conditional(nqz, nqpqz, bit);
 | 
			
		||||
			fmonty(nqx2, nqz2,
 | 
			
		||||
				   nqpqx2, nqpqz2,
 | 
			
		||||
				   nqx, nqz,
 | 
			
		||||
				   nqpqx, nqpqz,
 | 
			
		||||
				   q);
 | 
			
		||||
			swap_conditional(nqx2, nqpqx2, bit);
 | 
			
		||||
			swap_conditional(nqz2, nqpqz2, bit);
 | 
			
		||||
 | 
			
		||||
			t = nqx;
 | 
			
		||||
			nqx = nqx2;
 | 
			
		||||
			nqx2 = t;
 | 
			
		||||
			t = nqz;
 | 
			
		||||
			nqz = nqz2;
 | 
			
		||||
			nqz2 = t;
 | 
			
		||||
			t = nqpqx;
 | 
			
		||||
			nqpqx = nqpqx2;
 | 
			
		||||
			nqpqx2 = t;
 | 
			
		||||
			t = nqpqz;
 | 
			
		||||
			nqpqz = nqpqz2;
 | 
			
		||||
			nqpqz2 = t;
 | 
			
		||||
 | 
			
		||||
			byte <<= 1;
 | 
			
		||||
		}
 | 
			
		||||
	}
 | 
			
		||||
 | 
			
		||||
	__builtin_memcpy(resultx, nqx, sizeof(limb) * 10);
 | 
			
		||||
	__builtin_memcpy(resultz, nqz, sizeof(limb) * 10);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
static void crecip(limb *out, const limb *z)
 | 
			
		||||
{
 | 
			
		||||
	limb z2[10];
 | 
			
		||||
	limb z9[10];
 | 
			
		||||
	limb z11[10];
 | 
			
		||||
	limb z2_5_0[10];
 | 
			
		||||
	limb z2_10_0[10];
 | 
			
		||||
	limb z2_20_0[10];
 | 
			
		||||
	limb z2_50_0[10];
 | 
			
		||||
	limb z2_100_0[10];
 | 
			
		||||
	limb t0[10];
 | 
			
		||||
	limb t1[10];
 | 
			
		||||
	int i;
 | 
			
		||||
 | 
			
		||||
	/* 2 */ fsquare(z2, z);
 | 
			
		||||
	/* 4 */ fsquare(t1, z2);
 | 
			
		||||
	/* 8 */ fsquare(t0, t1);
 | 
			
		||||
	/* 9 */ fmul(z9, t0, z);
 | 
			
		||||
	/* 11 */ fmul(z11, z9, z2);
 | 
			
		||||
	/* 22 */ fsquare(t0, z11);
 | 
			
		||||
	/* 2^5 - 2^0 = 31 */ fmul(z2_5_0, t0, z9);
 | 
			
		||||
 | 
			
		||||
	/* 2^6 - 2^1 */ fsquare(t0, z2_5_0);
 | 
			
		||||
	/* 2^7 - 2^2 */ fsquare(t1, t0);
 | 
			
		||||
	/* 2^8 - 2^3 */ fsquare(t0, t1);
 | 
			
		||||
	/* 2^9 - 2^4 */ fsquare(t1, t0);
 | 
			
		||||
	/* 2^10 - 2^5 */ fsquare(t0, t1);
 | 
			
		||||
	/* 2^10 - 2^0 */ fmul(z2_10_0, t0, z2_5_0);
 | 
			
		||||
 | 
			
		||||
	/* 2^11 - 2^1 */ fsquare(t0, z2_10_0);
 | 
			
		||||
	/* 2^12 - 2^2 */ fsquare(t1, t0);
 | 
			
		||||
	/* 2^20 - 2^10 */ for (i = 2; i < 10; i += 2) { fsquare(t0, t1); fsquare(t1, t0); }
 | 
			
		||||
	/* 2^20 - 2^0 */ fmul(z2_20_0, t1, z2_10_0);
 | 
			
		||||
 | 
			
		||||
	/* 2^21 - 2^1 */ fsquare(t0, z2_20_0);
 | 
			
		||||
	/* 2^22 - 2^2 */ fsquare(t1, t0);
 | 
			
		||||
	/* 2^40 - 2^20 */ for (i = 2; i < 20; i += 2) { fsquare(t0, t1); fsquare(t1, t0); }
 | 
			
		||||
	/* 2^40 - 2^0 */ fmul(t0, t1, z2_20_0);
 | 
			
		||||
 | 
			
		||||
	/* 2^41 - 2^1 */ fsquare(t1, t0);
 | 
			
		||||
	/* 2^42 - 2^2 */ fsquare(t0, t1);
 | 
			
		||||
	/* 2^50 - 2^10 */ for (i = 2; i < 10; i += 2) { fsquare(t1, t0); fsquare(t0, t1); }
 | 
			
		||||
	/* 2^50 - 2^0 */ fmul(z2_50_0, t0, z2_10_0);
 | 
			
		||||
 | 
			
		||||
	/* 2^51 - 2^1 */ fsquare(t0, z2_50_0);
 | 
			
		||||
	/* 2^52 - 2^2 */ fsquare(t1, t0);
 | 
			
		||||
	/* 2^100 - 2^50 */ for (i = 2; i < 50; i += 2) { fsquare(t0, t1); fsquare(t1, t0); }
 | 
			
		||||
	/* 2^100 - 2^0 */ fmul(z2_100_0, t1, z2_50_0);
 | 
			
		||||
 | 
			
		||||
	/* 2^101 - 2^1 */ fsquare(t1, z2_100_0);
 | 
			
		||||
	/* 2^102 - 2^2 */ fsquare(t0, t1);
 | 
			
		||||
	/* 2^200 - 2^100 */ for (i = 2; i < 100; i += 2) { fsquare(t1, t0); fsquare(t0, t1); }
 | 
			
		||||
	/* 2^200 - 2^0 */ fmul(t1, t0, z2_100_0);
 | 
			
		||||
 | 
			
		||||
	/* 2^201 - 2^1 */ fsquare(t0, t1);
 | 
			
		||||
	/* 2^202 - 2^2 */ fsquare(t1, t0);
 | 
			
		||||
	/* 2^250 - 2^50 */ for (i = 2; i < 50; i += 2) { fsquare(t0, t1); fsquare(t1, t0); }
 | 
			
		||||
	/* 2^250 - 2^0 */ fmul(t0, t1, z2_50_0);
 | 
			
		||||
 | 
			
		||||
	/* 2^251 - 2^1 */ fsquare(t1, t0);
 | 
			
		||||
	/* 2^252 - 2^2 */ fsquare(t0, t1);
 | 
			
		||||
	/* 2^253 - 2^3 */ fsquare(t1, t0);
 | 
			
		||||
	/* 2^254 - 2^4 */ fsquare(t0, t1);
 | 
			
		||||
	/* 2^255 - 2^5 */ fsquare(t1, t0);
 | 
			
		||||
	/* 2^255 - 21 */ fmul(out, t1, z11);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
static inline void curve25519_normalize_secret(uint8_t secret[static 32])
 | 
			
		||||
{
 | 
			
		||||
	secret[0] &= 248;
 | 
			
		||||
	secret[31] &= 127;
 | 
			
		||||
	secret[31] |= 64;
 | 
			
		||||
}
 | 
			
		||||
static inline void curve25519(uint8_t mypublic[static 32], const uint8_t secret[static 32], const uint8_t basepoint[static 32])
 | 
			
		||||
{
 | 
			
		||||
	limb bp[10], x[10], z[11], zmone[10];
 | 
			
		||||
	uint8_t e[32];
 | 
			
		||||
 | 
			
		||||
	__builtin_memcpy(e, secret, 32);
 | 
			
		||||
	curve25519_normalize_secret(e);
 | 
			
		||||
 | 
			
		||||
	fexpand(bp, basepoint);
 | 
			
		||||
	cmult(x, z, e, bp);
 | 
			
		||||
	crecip(zmone, z);
 | 
			
		||||
	fmul(z, x, zmone);
 | 
			
		||||
	fcontract(mypublic, z);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
EMSCRIPTEN_KEEPALIVE void curve25519_generate_public(uint8_t public[static 32], const uint8_t private[static 32])
 | 
			
		||||
{
 | 
			
		||||
	static const uint8_t basepoint[32] = { 9 };
 | 
			
		||||
 | 
			
		||||
	curve25519(public, private, basepoint);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
EMSCRIPTEN_KEEPALIVE void curve25519_generate_private(uint8_t private[static 32])
 | 
			
		||||
{
 | 
			
		||||
	int i;
 | 
			
		||||
 | 
			
		||||
	EM_ASM({
 | 
			
		||||
		/* Same trick as libsodium */
 | 
			
		||||
		var getRandomValue = function() {
 | 
			
		||||
			var buf = new Uint32Array(1);
 | 
			
		||||
			window.crypto.getRandomValues(buf);
 | 
			
		||||
			return buf[0] >>> 0;
 | 
			
		||||
		};
 | 
			
		||||
		Module.getRandomValue = getRandomValue;
 | 
			
		||||
	});
 | 
			
		||||
	
 | 
			
		||||
	for (i = 0; i < 32; ++i)
 | 
			
		||||
		private[i] = EM_ASM_INT_V({ return Module.getRandomValue(); });
 | 
			
		||||
	curve25519_normalize_secret(private);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
static inline void encode_base64(char dest[4], const uint8_t src[3])
 | 
			
		||||
{
 | 
			
		||||
	const uint8_t input[] = { (src[0] >> 2) & 63, ((src[0] << 4) | (src[1] >> 4)) & 63, ((src[1] << 2) | (src[2] >> 6)) & 63, src[2] & 63 };
 | 
			
		||||
 | 
			
		||||
	for (unsigned int i = 0; i < 4; ++i)
 | 
			
		||||
		dest[i] = input[i] + 'A'
 | 
			
		||||
			  + (((25 - input[i]) >> 8) & 6)
 | 
			
		||||
			  - (((51 - input[i]) >> 8) & 75)
 | 
			
		||||
			  - (((61 - input[i]) >> 8) & 15)
 | 
			
		||||
			  + (((62 - input[i]) >> 8) & 3);
 | 
			
		||||
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
EMSCRIPTEN_KEEPALIVE void key_to_base64(char base64[static 45], const uint8_t key[static 32])
 | 
			
		||||
{
 | 
			
		||||
	unsigned int i;
 | 
			
		||||
 | 
			
		||||
	for (i = 0; i < 32 / 3; ++i)
 | 
			
		||||
		encode_base64(&base64[i * 4], &key[i * 3]);
 | 
			
		||||
	encode_base64(&base64[i * 4], (const uint8_t[]){ key[i * 3 + 0], key[i * 3 + 1], 0 });
 | 
			
		||||
	base64[45 - 2] = '=';
 | 
			
		||||
	base64[45 - 1] = '\0';
 | 
			
		||||
}
 | 
			
		||||
		Reference in New Issue
	
	Block a user