add regularization and graph
This commit is contained in:
parent
c97f9d6676
commit
9495c7db09
|
@ -1,58 +1,67 @@
|
|||
#!/usr/bin/env python3
|
||||
|
||||
import numpy as np
|
||||
try:
|
||||
import matplotlib.pyplot as mp
|
||||
except:
|
||||
mp = None
|
||||
|
||||
|
||||
def sigmoid(x):
|
||||
return 1/(1+np.exp(-x))
|
||||
|
||||
|
||||
def deriv_sigmoid(x):
|
||||
a = sigmoid(x)
|
||||
return a * (1 - a)
|
||||
|
||||
|
||||
def tanh(x):
|
||||
ep = np.exp(x)
|
||||
en = np.exp(-x)
|
||||
return (ep - en)/(ep + en)
|
||||
|
||||
|
||||
def deriv_tanh(x):
|
||||
a = tanh(x)
|
||||
return 1 - (a * a)
|
||||
|
||||
|
||||
def relu(x):
|
||||
ret = 0
|
||||
#fixme should map to compare
|
||||
if x > 0:
|
||||
ret = x
|
||||
elif type(x) is np.ndarray:
|
||||
ret = np.zeros(x.shape)
|
||||
return ret
|
||||
|
||||
def deriv_relu(x):
|
||||
ret = 0
|
||||
if z < 0:
|
||||
ret = 0.01
|
||||
else:
|
||||
ret = 1
|
||||
|
||||
def leaky_relu(x):
|
||||
ret = 0.01 * x
|
||||
#fixme should map to compare
|
||||
if x > 0:
|
||||
ret = x
|
||||
elif type(x) is np.ndarray:
|
||||
ret = np.ones(x.shape)*0.01
|
||||
return ret
|
||||
|
||||
|
||||
class MultiLayerPerceptron(object):
|
||||
|
||||
@staticmethod
|
||||
def relu(x):
|
||||
ret = 0
|
||||
#fixme should map to compare
|
||||
if x > 0:
|
||||
ret = x
|
||||
elif type(x) is np.ndarray:
|
||||
ret = np.zeros(x.shape)
|
||||
return ret
|
||||
|
||||
@staticmethod
|
||||
def deriv_relu(x):
|
||||
ret = 0
|
||||
if z < 0:
|
||||
ret = 0.01
|
||||
else:
|
||||
ret = 1
|
||||
|
||||
@staticmethod
|
||||
def leaky_relu(x):
|
||||
ret = 0.01 * x
|
||||
#fixme should map to compare
|
||||
if x > 0:
|
||||
ret = x
|
||||
elif type(x) is np.ndarray:
|
||||
ret = np.ones(x.shape)*0.01
|
||||
return ret
|
||||
|
||||
functions = {
|
||||
"sigmoid": {"function": sigmoid, "derivative": deriv_sigmoid},
|
||||
"tanh": {"function": tanh, "derivative": deriv_tanh},
|
||||
"relu": {"function": relu, "derivative": deriv_relu},
|
||||
}
|
||||
|
||||
def __init__(self, L=1, n=None, g=None, alpha=0.01):
|
||||
def __init__(self, L=1, n=None, g=None, alpha=0.01, lambd=0):
|
||||
"""Initializes network geometry and parameters
|
||||
:param L: number of layers including output and excluding input. Defaut 1.
|
||||
:type L: int
|
||||
|
@ -84,6 +93,7 @@ class MultiLayerPerceptron(object):
|
|||
self._Z = None
|
||||
self._m = 0
|
||||
self._alpha = alpha
|
||||
self._lambda = lambd
|
||||
|
||||
def set_all_input_examples(self, X, m=1):
|
||||
"""Set the input examples.
|
||||
|
@ -153,6 +163,9 @@ class MultiLayerPerceptron(object):
|
|||
def get_output(self):
|
||||
return self._A[self._L]
|
||||
|
||||
def get_weights(self):
|
||||
return self._W[1:]
|
||||
|
||||
def back_propagation(self, get_cost_function=False):
|
||||
"""Back propagation
|
||||
|
||||
|
@ -169,8 +182,12 @@ class MultiLayerPerceptron(object):
|
|||
dA = [None] + [None] * self._L
|
||||
dA[l] = -self._Y/self._A[l] + ((1-self._Y)/(1-self._A[l]))
|
||||
if get_cost_function:
|
||||
wnorms = 0
|
||||
for w in self._W[1:]:
|
||||
wnorms += np.linalg.norm(w)
|
||||
J = -1/m * ( np.dot(self._Y, np.log(self._A[l]).T) + \
|
||||
np.dot((1 - self._Y), np.log(1-self._A[l]).T) )
|
||||
np.dot((1 - self._Y), np.log(1-self._A[l]).T) ) + \
|
||||
self._lambda/(2*m) * wnorms # regularization
|
||||
|
||||
#dZ = self._A[l] - self._Y
|
||||
for l in range(self._L, 0, -1):
|
||||
|
@ -182,12 +199,13 @@ class MultiLayerPerceptron(object):
|
|||
# dW[l] = 1/m * np.dot(dZ, self._A[l-1].T)
|
||||
# db[l] = 1/m * np.sum(dZ, axis=1, keepdims=True)
|
||||
for l in range(self._L, 0, -1):
|
||||
self._W[l] = self._W[l] - self._alpha * dW[l]
|
||||
self._W[l] = self._W[l] - self._alpha * dW[l] - \
|
||||
(self._alpha*self._lambda/m * self._W[l]) # regularization
|
||||
self._b[l] = self._b[l] - self._alpha * db[l]
|
||||
|
||||
return J
|
||||
|
||||
def minimize_cost(self, min_cost, max_iter=100000, alpha=None):
|
||||
def minimize_cost(self, min_cost, max_iter=100000, alpha=None, plot=False):
|
||||
"""Propagate forward then backward in loop while minimizing the cost function.
|
||||
|
||||
:param min_cost: cost function value to reach in order to stop algo.
|
||||
|
@ -199,15 +217,24 @@ class MultiLayerPerceptron(object):
|
|||
if alpha is None:
|
||||
alpha = self._alpha
|
||||
self.propagate()
|
||||
if plot:
|
||||
y=[]
|
||||
x=[]
|
||||
for i in range(max_iter):
|
||||
J = self.back_propagation(True)
|
||||
if plot:
|
||||
y.append(J[0][0])
|
||||
x.append(nb_iter)
|
||||
self.propagate()
|
||||
nb_iter = i + 1
|
||||
if J <= min_cost:
|
||||
break
|
||||
if mp and plot:
|
||||
mp.plot(x,y)
|
||||
mp.show()
|
||||
return {"iterations": nb_iter, "cost_function": J}
|
||||
|
||||
def learning(self, X, Y, m, min_cost=0.05, max_iter=100000, alpha=None):
|
||||
def learning(self, X, Y, m, min_cost=0.05, max_iter=100000, alpha=None, plot=False):
|
||||
"""Tune parameters in order to learn examples by propagate and backpropagate.
|
||||
|
||||
:param X: the inputs training examples
|
||||
|
@ -220,12 +247,12 @@ class MultiLayerPerceptron(object):
|
|||
"""
|
||||
self.set_all_training_examples(X, Y, m)
|
||||
self.prepare()
|
||||
res = self.minimize_cost(min_cost, max_iter, alpha)
|
||||
res = self.minimize_cost(min_cost, max_iter, alpha, plot)
|
||||
return res
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
mlp = MultiLayerPerceptron(L=2, n=[2, 3, 1], g=["tanh", "sigmoid"], alpha=2)
|
||||
mlp = MultiLayerPerceptron(L=2, n=[2, 3, 1], g=["tanh", "sigmoid"], alpha=2, lambd=0.005)
|
||||
#mlp = MultiLayerPerceptron(L=1, n=[2, 1], g=["sigmoid"], alpha=0.1)
|
||||
|
||||
X = np.array([[0, 0],
|
||||
|
@ -238,7 +265,15 @@ if __name__ == "__main__":
|
|||
[1],
|
||||
[0]])
|
||||
|
||||
res = mlp.learning(X.T, Y.T, 4)
|
||||
res = mlp.learning(X.T, Y.T, 4, max_iter=5000, plot=True)
|
||||
print(res)
|
||||
print(mlp.get_output())
|
||||
print(mlp.get_weights())
|
||||
#mlp.set_all_training_examples(X.T, Y.T, 4)
|
||||
#mlp.prepare()
|
||||
#print(mlp.propagate())
|
||||
#for i in range(100):
|
||||
# print(mlp.back_propagation())
|
||||
# mlp.propagate()
|
||||
#print(mlp.propagate())
|
||||
|
||||
|
|
Loading…
Reference in New Issue