add softmax, RMSProp, momentum, Adam. Fix ReLU. Enhance weights init.
This commit is contained in:
parent
9495c7db09
commit
fee1994adb
|
@ -19,6 +19,7 @@ def deriv_sigmoid(x):
|
||||||
def tanh(x):
|
def tanh(x):
|
||||||
ep = np.exp(x)
|
ep = np.exp(x)
|
||||||
en = np.exp(-x)
|
en = np.exp(-x)
|
||||||
|
#print("ep:{}\nen:{}\n".format(ep,en))
|
||||||
return (ep - en)/(ep + en)
|
return (ep - en)/(ep + en)
|
||||||
|
|
||||||
|
|
||||||
|
@ -28,20 +29,13 @@ def deriv_tanh(x):
|
||||||
|
|
||||||
|
|
||||||
def relu(x):
|
def relu(x):
|
||||||
ret = 0
|
return np.maximum(x, np.zeros(x.shape))
|
||||||
#fixme should map to compare
|
|
||||||
if x > 0:
|
|
||||||
ret = x
|
|
||||||
elif type(x) is np.ndarray:
|
|
||||||
ret = np.zeros(x.shape)
|
|
||||||
return ret
|
|
||||||
|
|
||||||
def deriv_relu(x):
|
def deriv_relu(x):
|
||||||
ret = 0
|
ret = x
|
||||||
if z < 0:
|
ret[ret > 0] = 1
|
||||||
ret = 0.01
|
ret[ret < 0] = 0
|
||||||
else:
|
return ret
|
||||||
ret = 1
|
|
||||||
|
|
||||||
def leaky_relu(x):
|
def leaky_relu(x):
|
||||||
ret = 0.01 * x
|
ret = 0.01 * x
|
||||||
|
@ -52,16 +46,56 @@ def leaky_relu(x):
|
||||||
ret = np.ones(x.shape)*0.01
|
ret = np.ones(x.shape)*0.01
|
||||||
return ret
|
return ret
|
||||||
|
|
||||||
|
def softmax(x):
|
||||||
|
t = np.exp(x)
|
||||||
|
sum_t = np.sum(t, axis=0)
|
||||||
|
return t / sum_t
|
||||||
|
|
||||||
|
def w_rand_tanh(n, l, xavier_init=True):
|
||||||
|
""" Initialize weights of a layer for tanH activation function
|
||||||
|
|
||||||
|
:param n: vector of number of units per layer
|
||||||
|
:param l: current layer
|
||||||
|
:param xavier_init: if True will use Xavier initialization
|
||||||
|
|
||||||
|
"""
|
||||||
|
if xavier_init:
|
||||||
|
print("tanh factor={}".format(np.sqrt(1/n[l-1])))
|
||||||
|
ret = np.random.randn(n[l], n[l-1]) * np.sqrt(1/n[l-1])
|
||||||
|
else:
|
||||||
|
print("tanh factor={}".format(np.sqrt(2/(n[l-1]+n[l]))))
|
||||||
|
ret = np.random.randn(n[l], n[l-1]) * np.sqrt(2/(n[l-1]+n[l]))
|
||||||
|
return ret
|
||||||
|
|
||||||
|
def w_rand_relu(n, l):
|
||||||
|
""" Initialize weights of a layer for tanH activation function
|
||||||
|
|
||||||
|
:param n: vector of number of units per layer
|
||||||
|
:param l: current layer
|
||||||
|
|
||||||
|
"""
|
||||||
|
print("relu factor={}".format(np.sqrt(2/n[l-1])))
|
||||||
|
return np.random.randn(n[l], n[l-1]) * np.sqrt(2/n[l-1])
|
||||||
|
|
||||||
|
def w_rand_sigmoid(n, l):
|
||||||
|
print("sigmoid factor={}".format(1/(n[l-1]*n[l])))
|
||||||
|
return np.random.randn(n[l], n[l-1]) * (1/(n[l-1]*n[l]))
|
||||||
|
|
||||||
|
def w_rand_softmax(n, l, factor=0.01):
|
||||||
|
print("softmax factor={}".format(factor))
|
||||||
|
return np.random.randn(n[l], n[l-1]) * factor
|
||||||
|
|
||||||
|
|
||||||
class MultiLayerPerceptron(object):
|
class MultiLayerPerceptron(object):
|
||||||
|
|
||||||
functions = {
|
functions = {
|
||||||
"sigmoid": {"function": sigmoid, "derivative": deriv_sigmoid},
|
"sigmoid": {"function": sigmoid, "derivative": deriv_sigmoid, "w_rand": w_rand_sigmoid, "name": "sigmoid"},
|
||||||
"tanh": {"function": tanh, "derivative": deriv_tanh},
|
"tanh": {"function": tanh, "derivative": deriv_tanh, "w_rand": w_rand_tanh, "name": "tanh"},
|
||||||
"relu": {"function": relu, "derivative": deriv_relu},
|
"relu": {"function": relu, "derivative": deriv_relu, "w_rand": w_rand_relu, "name": "relu"},
|
||||||
|
"softmax": {"function": softmax, "derivative": None, "w_rand": w_rand_softmax, "name": "softmax"},
|
||||||
}
|
}
|
||||||
|
|
||||||
def __init__(self, L=1, n=None, g=None, alpha=0.01, lambd=0):
|
def __init__(self, L=1, n=None, g=None, alpha=0.01, set_random_w=True, use_formula_w=False, w_rand_factor=1):
|
||||||
"""Initializes network geometry and parameters
|
"""Initializes network geometry and parameters
|
||||||
:param L: number of layers including output and excluding input. Defaut 1.
|
:param L: number of layers including output and excluding input. Defaut 1.
|
||||||
:type L: int
|
:type L: int
|
||||||
|
@ -71,8 +105,11 @@ class MultiLayerPerceptron(object):
|
||||||
Possible names are: "sigmoid", "tanh". Default ["sigmoid"].
|
Possible names are: "sigmoid", "tanh". Default ["sigmoid"].
|
||||||
:type g: list
|
:type g: list
|
||||||
:param alpha: learning rate. Default 0.01.
|
:param alpha: learning rate. Default 0.01.
|
||||||
|
:param set_random_w: if True will initialize randomly weights using either w_rand_factor
|
||||||
|
or a formula depending on activation functions if use_formula_w is True
|
||||||
"""
|
"""
|
||||||
w_rand_factor = 1
|
#w_rand_factor = 1
|
||||||
|
self._prepared = False
|
||||||
self._L = L
|
self._L = L
|
||||||
if n is None:
|
if n is None:
|
||||||
n = [2, 1]
|
n = [2, 1]
|
||||||
|
@ -82,7 +119,11 @@ class MultiLayerPerceptron(object):
|
||||||
else:
|
else:
|
||||||
g = [MultiLayerPerceptron.functions[fct] for fct in g]
|
g = [MultiLayerPerceptron.functions[fct] for fct in g]
|
||||||
self._g = [None] + g
|
self._g = [None] + g
|
||||||
self._W = [None] + [np.random.randn(n[l+1], n[l])*w_rand_factor for l in range(L)]
|
# check if softmax multi-class classification
|
||||||
|
self._softmax = False
|
||||||
|
if g[-1]["name"] == "softmax":
|
||||||
|
self._softmax = True
|
||||||
|
self._W = [None] * (L+1)
|
||||||
self._b = [None] + [np.zeros((n[l+1], 1)) for l in range(L)]
|
self._b = [None] + [np.zeros((n[l+1], 1)) for l in range(L)]
|
||||||
assert(len(self._g) == len(self._W))
|
assert(len(self._g) == len(self._W))
|
||||||
assert(len(self._g) == len(self._b))
|
assert(len(self._g) == len(self._b))
|
||||||
|
@ -93,37 +134,123 @@ class MultiLayerPerceptron(object):
|
||||||
self._Z = None
|
self._Z = None
|
||||||
self._m = 0
|
self._m = 0
|
||||||
self._alpha = alpha
|
self._alpha = alpha
|
||||||
self._lambda = lambd
|
# optimization
|
||||||
|
self._lambda = 0
|
||||||
|
self._regularization = False
|
||||||
|
self._momentum = False
|
||||||
|
self._rmsprop = False
|
||||||
|
self._adam = False
|
||||||
|
# initialise weights
|
||||||
|
if set_random_w:
|
||||||
|
self.init_random_weights(use_formula_w, w_rand_factor)
|
||||||
|
|
||||||
def set_all_input_examples(self, X, m=1):
|
def init_random_weights(self, use_formula=False, w_rand_factor=1):
|
||||||
|
"""Initialize randomly weights using a factor or using some formula
|
||||||
|
|
||||||
|
:param w_rand_factor: factorize random weights with this (default 1)
|
||||||
|
:param use_formula: if True will use formules corresponding to the activation functions
|
||||||
|
"""
|
||||||
|
if use_formula:
|
||||||
|
for l0 in range(self._L):
|
||||||
|
l = l0 + 1
|
||||||
|
self._W[l] = self._g[l]["w_rand"](self._n, l)
|
||||||
|
else:
|
||||||
|
if type(w_rand_factor) is list:
|
||||||
|
self._W = [None] + [np.random.randn(self._n[l+1], self._n[l])*w_rand_factor[l] for l in range(self._L)]
|
||||||
|
else:
|
||||||
|
self._W = [None] + [np.random.randn(self._n[l+1], self._n[l])*w_rand_factor for l in range(self._L)]
|
||||||
|
|
||||||
|
|
||||||
|
def use_regularization(self, lambd):
|
||||||
|
"""Activates regularization for backpropagation
|
||||||
|
|
||||||
|
:param lambd: the lambda parameter value for regularization
|
||||||
|
|
||||||
|
"""
|
||||||
|
self._regularization = True
|
||||||
|
self._lambda_regul = lambd
|
||||||
|
|
||||||
|
def use_momentum(self, beta=0.9, v_dw=0., v_db=0.):
|
||||||
|
"""Activates momentum optimization for backpropagation
|
||||||
|
|
||||||
|
:param beta: the beta parameter value for momentum (default 0.9)
|
||||||
|
:param v_dw: v_dw initial value for momentum (default 0.0)
|
||||||
|
:param v_db: v_db initial value for momentum (default 0.0)
|
||||||
|
|
||||||
|
"""
|
||||||
|
self._momentum = True
|
||||||
|
self._beta_momentum = beta
|
||||||
|
n = self._n
|
||||||
|
self._v_dw_momentum = [None] + [v_dw * np.ones((n[l+1], n[l])) for l in range(self._L)]
|
||||||
|
self._v_db_momentum = [None] + [v_db * np.ones((n[l+1], 1)) for l in range(self._L)]
|
||||||
|
|
||||||
|
def use_rmsprop(self, beta=0.999, s_dw=0., s_db=0., epsilon=1.0e-8):
|
||||||
|
"""Activates RMSProp optimization for backpropagation
|
||||||
|
|
||||||
|
:param beta: the beta parameter value for RMSProp (default 0.999)
|
||||||
|
:param s_dw: s_dw initial value for RMSProp (default 0.0)
|
||||||
|
:param s_db: s_db initial value for RMSProp (default 0.0)
|
||||||
|
:param epsilon: epsilon value for RMSProp (default 1.0e-8)
|
||||||
|
|
||||||
|
"""
|
||||||
|
self._rmsprop = True
|
||||||
|
self._beta_rmsprop = beta
|
||||||
|
n = self._n
|
||||||
|
self._s_dw_rmsprop = [None] + [s_dw * np.ones((n[l+1], n[l])) for l in range(self._L)]
|
||||||
|
self._s_db_rmsprop = [None] + [s_db * np.ones((n[l+1], 1)) for l in range(self._L)]
|
||||||
|
self._epsilon_rmsprop = epsilon
|
||||||
|
|
||||||
|
def use_adam(self, beta_m=0.9, v_dw=0., v_db=0., beta_r=0.999, s_dw=0., s_db=0., epsilon=1.0e-8):
|
||||||
|
"""Activates Adam optimization for backpropagation
|
||||||
|
|
||||||
|
:param beta_m: the beta parameter value for momentum (default 0.9)
|
||||||
|
:param v_dw: v_dw initial value for momentum (default 0.0)
|
||||||
|
:param v_db: v_db initial value for momentum (default 0.0)
|
||||||
|
:param beta_r: the beta parameter value for RMSProp (default 0.999)
|
||||||
|
:param s_dw: s_dw initial value for RMSProp (default 0.0)
|
||||||
|
:param s_db: s_db initial value for RMSProp (default 0.0)
|
||||||
|
:param epsilon: epsilon value for RMSProp (default 1.0e-8)
|
||||||
|
|
||||||
|
"""
|
||||||
|
self._adam = True
|
||||||
|
self.use_momentum(beta_m, v_dw, v_db)
|
||||||
|
self.use_rmsprop(beta_r, s_dw, s_db, epsilon)
|
||||||
|
|
||||||
|
def set_all_input_examples(self, X, m=None):
|
||||||
"""Set the input examples.
|
"""Set the input examples.
|
||||||
|
|
||||||
:param X: matrix of dimensions (n[0], m). Accepts also a list (len m) of lists (len n[0])
|
:param X: matrix of dimensions (n[0], m). Accepts also a list (len m) of lists (len n[0])
|
||||||
:param m: number of training examples.
|
:param m: number of training examples.
|
||||||
:type m: int
|
:type m: int
|
||||||
"""
|
"""
|
||||||
|
if m is None:
|
||||||
|
m = self._m
|
||||||
if type(X) is list:
|
if type(X) is list:
|
||||||
assert(len(X) == m)
|
assert(len(X) == m)
|
||||||
self._X = np.matrix(X).T
|
self._X = np.matrix(X).T
|
||||||
else:
|
else:
|
||||||
assert(X.shape == (self._n[0], self._m))
|
#print(X.shape, self._n[0], m)
|
||||||
|
assert(X.shape == (self._n[0], m))
|
||||||
self._X = X
|
self._X = X
|
||||||
self._m = m
|
self._m = m
|
||||||
assert((self._m == m) or (self._m == 0))
|
assert((self._m == m) or (self._m == 0))
|
||||||
self._m = m
|
self._m = m
|
||||||
|
|
||||||
def set_all_expected_output_examples(self, Y, m=1):
|
def set_all_expected_output_examples(self, Y, m=None):
|
||||||
"""Set the output examples
|
"""Set the output examples
|
||||||
|
|
||||||
:param Y: matrix of dimensions (n[L], m). Accepts also a list (len m) of lists (len n[L])
|
:param Y: matrix of dimensions (n[L], m). Accepts also a list (len m) of lists (len n[L])
|
||||||
:param m: number of training examples.
|
:param m: number of training examples.
|
||||||
:type m: int
|
:type m: int
|
||||||
"""
|
"""
|
||||||
|
if m is None:
|
||||||
|
m = self._m
|
||||||
if type(Y) is list:
|
if type(Y) is list:
|
||||||
assert(len(Y) == m)
|
assert(len(Y) == m)
|
||||||
self._Y = np.matrix(Y).T
|
self._Y = np.matrix(Y).T
|
||||||
else:
|
else:
|
||||||
assert(Y.shape == (self._n[self._L], self._m))
|
#print(Y.shape, self._n[self._L], m)
|
||||||
|
assert(Y.shape == (self._n[self._L], m))
|
||||||
self._Y = Y
|
self._Y = Y
|
||||||
assert((self._m == m) or (self._m == 0))
|
assert((self._m == m) or (self._m == 0))
|
||||||
self._m = m
|
self._m = m
|
||||||
|
@ -141,18 +268,21 @@ class MultiLayerPerceptron(object):
|
||||||
self.set_all_expected_output_examples(Y, m)
|
self.set_all_expected_output_examples(Y, m)
|
||||||
|
|
||||||
def prepare(self):
|
def prepare(self):
|
||||||
"""Prepare network"""
|
"""Prepare network for propagation"""
|
||||||
assert(self._X is not None)
|
if self._prepared == False:
|
||||||
assert(self._m > 0)
|
self._prepared = True
|
||||||
m = self._m
|
assert(self._X is not None)
|
||||||
self._A = [self._X]
|
assert(self._m > 0)
|
||||||
self._A += [np.empty((self._n[l+1], m)) for l in range(self._L)]
|
m = self._m
|
||||||
self._Z = [None] + [np.empty((self._n[l+1], m)) for l in range(self._L)]
|
self._A = [self._X]
|
||||||
|
self._A += [np.empty((self._n[l+1], m)) for l in range(self._L)]
|
||||||
|
self._Z = [None] + [np.empty((self._n[l+1], m)) for l in range(self._L)]
|
||||||
|
|
||||||
def propagate(self):
|
def propagate(self):
|
||||||
"""Forward propagation
|
"""Forward propagation
|
||||||
|
|
||||||
:return: matrix of computed outputs (n[L], m)
|
:return: matrix of computed outputs (n[L], m)
|
||||||
|
|
||||||
"""
|
"""
|
||||||
for l0 in range(self._L):
|
for l0 in range(self._L):
|
||||||
l = l0 + 1
|
l = l0 + 1
|
||||||
|
@ -160,48 +290,114 @@ class MultiLayerPerceptron(object):
|
||||||
self._A[l] = self._g[l]["function"](self._Z[l])
|
self._A[l] = self._g[l]["function"](self._Z[l])
|
||||||
return self._A[self._L]
|
return self._A[self._L]
|
||||||
|
|
||||||
|
def compute_outputs(self, X=None):
|
||||||
|
"""Compute outputs with forward propagation.
|
||||||
|
Note: if no input provided, then the input should have been set using
|
||||||
|
either `set_all_input_examples()` or `set_all_training_examples()`.
|
||||||
|
|
||||||
|
:param X: if None will use self._X
|
||||||
|
:return: the computed output
|
||||||
|
|
||||||
|
"""
|
||||||
|
if X is not None:
|
||||||
|
if type(X) is list:
|
||||||
|
m = len(X)
|
||||||
|
else:
|
||||||
|
m = X.shape[1]
|
||||||
|
self.set_all_input_examples(X, m)
|
||||||
|
self.prepare()
|
||||||
|
self.propagate()
|
||||||
|
return self._A[self._L]
|
||||||
|
|
||||||
def get_output(self):
|
def get_output(self):
|
||||||
return self._A[self._L]
|
return self._A[self._L]
|
||||||
|
|
||||||
|
def get_expected_output(self):
|
||||||
|
return self._Y
|
||||||
|
|
||||||
|
def get_input(self):
|
||||||
|
return self._X
|
||||||
|
|
||||||
def get_weights(self):
|
def get_weights(self):
|
||||||
return self._W[1:]
|
return self._W[1:]
|
||||||
|
|
||||||
|
def get_bias(self):
|
||||||
|
return self._b[1:]
|
||||||
|
|
||||||
def back_propagation(self, get_cost_function=False):
|
def back_propagation(self, get_cost_function=False):
|
||||||
"""Back propagation
|
"""Back propagation
|
||||||
|
|
||||||
:param get_cost_function: if True the cost function J
|
:param get_cost_function: if True the cost function J
|
||||||
will be computed and returned.
|
will be computed and returned.
|
||||||
J = -1/m((Y(A.T)) + (1-Y)(A.T))
|
J = -1/m((Y(A.T)) + (1-Y)(A.T))
|
||||||
|
if self._regularization will add:
|
||||||
|
J += lamda/(2*m)*Wnorm
|
||||||
:return: the cost function if get_cost_function==True else None
|
:return: the cost function if get_cost_function==True else None
|
||||||
|
|
||||||
"""
|
"""
|
||||||
J = None
|
J = None
|
||||||
l = self._L
|
L = self._L
|
||||||
m = self._m
|
m = self._m
|
||||||
dW = [None] + [None] * self._L
|
dW = [None] + [None] * self._L
|
||||||
db = [None] + [None] * self._L
|
db = [None] + [None] * self._L
|
||||||
dA = [None] + [None] * self._L
|
dA = [None] + [None] * self._L
|
||||||
dA[l] = -self._Y/self._A[l] + ((1-self._Y)/(1-self._A[l]))
|
dA[L] = -self._Y/self._A[L] + ((1-self._Y)/(1-self._A[L]))
|
||||||
if get_cost_function:
|
|
||||||
wnorms = 0
|
|
||||||
for w in self._W[1:]:
|
|
||||||
wnorms += np.linalg.norm(w)
|
|
||||||
J = -1/m * ( np.dot(self._Y, np.log(self._A[l]).T) + \
|
|
||||||
np.dot((1 - self._Y), np.log(1-self._A[l]).T) ) + \
|
|
||||||
self._lambda/(2*m) * wnorms # regularization
|
|
||||||
|
|
||||||
#dZ = self._A[l] - self._Y
|
# Compute cost function
|
||||||
for l in range(self._L, 0, -1):
|
if get_cost_function:
|
||||||
dZ = dA[l] * self._g[l]["derivative"](self._Z[l])
|
if self._softmax:
|
||||||
|
# case of softmax multi-class
|
||||||
|
loss = -np.sum(self._Y * np.log(self._A[L]), axis=0)
|
||||||
|
J = 1/m * np.sum(loss)
|
||||||
|
else:
|
||||||
|
J = -1/m * np.sum(( np.dot(self._Y, np.log(self._A[L]).T) + \
|
||||||
|
np.dot((1 - self._Y), np.log(1-self._A[L]).T) ), axis=1)
|
||||||
|
# add regularization
|
||||||
|
if self._regularization:
|
||||||
|
wnorms = 0
|
||||||
|
for w in self._W[1:]:
|
||||||
|
wnorms += np.linalg.norm(w)
|
||||||
|
J += self._lambda_regul/(2*m) * wnorms
|
||||||
|
|
||||||
|
# Compute weights derivatives
|
||||||
|
for l in range(L, 0, -1):
|
||||||
|
if self._softmax and l == L:
|
||||||
|
# output layer for softmax multi-class
|
||||||
|
dZ = self._A[L] - self._Y
|
||||||
|
else:
|
||||||
|
dZ = dA[l] * self._g[l]["derivative"](self._Z[l])
|
||||||
dW[l] = 1/self._m * np.dot(dZ, self._A[l-1].T)
|
dW[l] = 1/self._m * np.dot(dZ, self._A[l-1].T)
|
||||||
db[l] = 1/m * np.sum(dZ, axis=1, keepdims=True)
|
db[l] = 1/m * np.sum(dZ, axis=1, keepdims=True)
|
||||||
dA[l-1] = np.dot(self._W[l].T, dZ)
|
dA[l-1] = np.dot(self._W[l].T, dZ)
|
||||||
# dZ = np.dot(self._W[l+1].T, dZ) * self._g[l]["derivative"](self._Z[l])
|
|
||||||
# dW[l] = 1/m * np.dot(dZ, self._A[l-1].T)
|
# Update weights
|
||||||
# db[l] = 1/m * np.sum(dZ, axis=1, keepdims=True)
|
for l in range(L, 0, -1):
|
||||||
for l in range(self._L, 0, -1):
|
w_factor = dW[l]
|
||||||
self._W[l] = self._W[l] - self._alpha * dW[l] - \
|
b_factor = db[l]
|
||||||
(self._alpha*self._lambda/m * self._W[l]) # regularization
|
# add momentum
|
||||||
self._b[l] = self._b[l] - self._alpha * db[l]
|
if self._momentum:
|
||||||
|
self._v_dw_momentum[l] = self._beta_momentum * self._v_dw_momentum[l] + \
|
||||||
|
(1 - self._beta_momentum) * dW[l]
|
||||||
|
self._v_db_momentum[l] = self._beta_momentum * self._v_db_momentum[l] + \
|
||||||
|
(1 - self._beta_momentum) * db[l]
|
||||||
|
w_factor = self._v_dw_momentum[l]
|
||||||
|
b_factor = self._v_db_momentum[l]
|
||||||
|
# add RMSProp
|
||||||
|
if self._rmsprop:
|
||||||
|
self._s_dw_rmsprop[l] = self._beta_rmsprop * self._s_dw_rmsprop[l] + \
|
||||||
|
(1 - self._beta_rmsprop) * (dW[l]**2)
|
||||||
|
self._s_db_rmsprop[l] = self._beta_rmsprop * self._s_db_rmsprop[l] + \
|
||||||
|
(1 - self._beta_rmsprop) * (db[l]**2)
|
||||||
|
# if adam optimization is use the formula will work as w/b_factor are set in momentum
|
||||||
|
w_factor = w_factor / (np.sqrt(self._s_dw_rmsprop[l]) + self._epsilon_rmsprop)
|
||||||
|
b_factor = b_factor / (np.sqrt(self._s_db_rmsprop[l]) + self._epsilon_rmsprop)
|
||||||
|
# add regularization
|
||||||
|
if self._regularization:
|
||||||
|
self._W[l] = self._W[l] - self._alpha * w_factor - \
|
||||||
|
(self._alpha*self._lambda_regul/m) * self._W[l]
|
||||||
|
else:
|
||||||
|
self._W[l] = self._W[l] - self._alpha * w_factor
|
||||||
|
self._b[l] = self._b[l] - self._alpha * b_factor
|
||||||
|
|
||||||
return J
|
return J
|
||||||
|
|
||||||
|
@ -223,7 +419,7 @@ class MultiLayerPerceptron(object):
|
||||||
for i in range(max_iter):
|
for i in range(max_iter):
|
||||||
J = self.back_propagation(True)
|
J = self.back_propagation(True)
|
||||||
if plot:
|
if plot:
|
||||||
y.append(J[0][0])
|
y.append(J)
|
||||||
x.append(nb_iter)
|
x.append(nb_iter)
|
||||||
self.propagate()
|
self.propagate()
|
||||||
nb_iter = i + 1
|
nb_iter = i + 1
|
||||||
|
@ -250,30 +446,3 @@ class MultiLayerPerceptron(object):
|
||||||
res = self.minimize_cost(min_cost, max_iter, alpha, plot)
|
res = self.minimize_cost(min_cost, max_iter, alpha, plot)
|
||||||
return res
|
return res
|
||||||
|
|
||||||
|
|
||||||
if __name__ == "__main__":
|
|
||||||
mlp = MultiLayerPerceptron(L=2, n=[2, 3, 1], g=["tanh", "sigmoid"], alpha=2, lambd=0.005)
|
|
||||||
#mlp = MultiLayerPerceptron(L=1, n=[2, 1], g=["sigmoid"], alpha=0.1)
|
|
||||||
|
|
||||||
X = np.array([[0, 0],
|
|
||||||
[0, 1],
|
|
||||||
[1, 0],
|
|
||||||
[1, 1]])
|
|
||||||
|
|
||||||
Y = np.array([[0],
|
|
||||||
[1],
|
|
||||||
[1],
|
|
||||||
[0]])
|
|
||||||
|
|
||||||
res = mlp.learning(X.T, Y.T, 4, max_iter=5000, plot=True)
|
|
||||||
print(res)
|
|
||||||
print(mlp.get_output())
|
|
||||||
print(mlp.get_weights())
|
|
||||||
#mlp.set_all_training_examples(X.T, Y.T, 4)
|
|
||||||
#mlp.prepare()
|
|
||||||
#print(mlp.propagate())
|
|
||||||
#for i in range(100):
|
|
||||||
# print(mlp.back_propagation())
|
|
||||||
# mlp.propagate()
|
|
||||||
#print(mlp.propagate())
|
|
||||||
|
|
||||||
|
|
Loading…
Reference in New Issue