132 lines
4.2 KiB
Python
132 lines
4.2 KiB
Python
import hashlib
|
|
import json
|
|
from math import radians, cos, sqrt
|
|
import os
|
|
import sys
|
|
|
|
from elodie import constants
|
|
|
|
|
|
class Db(object):
|
|
def __init__(self):
|
|
# verify that the application directory (~/.elodie) exists,
|
|
# else create it
|
|
if not os.path.exists(constants.application_directory):
|
|
os.makedirs(constants.application_directory)
|
|
|
|
# If the hash db doesn't exist we create it.
|
|
# Otherwise we only open for reading
|
|
if not os.path.isfile(constants.hash_db):
|
|
with open(constants.hash_db, 'a'):
|
|
os.utime(constants.hash_db, None)
|
|
|
|
self.hash_db = {}
|
|
|
|
# We know from above that this file exists so we open it
|
|
# for reading only.
|
|
with open(constants.hash_db, 'r') as f:
|
|
try:
|
|
self.hash_db = json.load(f)
|
|
except ValueError:
|
|
pass
|
|
|
|
# If the location db doesn't exist we create it.
|
|
# Otherwise we only open for reading
|
|
if not os.path.isfile(constants.location_db):
|
|
with open(constants.location_db, 'a'):
|
|
os.utime(constants.location_db, None)
|
|
|
|
self.location_db = []
|
|
|
|
# We know from above that this file exists so we open it
|
|
# for reading only.
|
|
with open(constants.location_db, 'r') as f:
|
|
try:
|
|
self.location_db = json.load(f)
|
|
except ValueError:
|
|
pass
|
|
|
|
def add_hash(self, key, value, write=False):
|
|
self.hash_db[key] = value
|
|
if(write is True):
|
|
self.update_hash_db()
|
|
|
|
def check_hash(self, key):
|
|
return key in self.hash_db
|
|
|
|
def get_hash(self, key):
|
|
if(self.check_hash(key) is True):
|
|
return self.hash_db[key]
|
|
return None
|
|
|
|
def update_hash_db(self):
|
|
with open(constants.hash_db, 'w') as f:
|
|
json.dump(self.hash_db, f)
|
|
|
|
"""
|
|
http://stackoverflow.com/a/3431835/1318758
|
|
"""
|
|
def checksum(self, file_path, blocksize=65536):
|
|
hasher = hashlib.sha256()
|
|
with open(file_path, 'r') as f:
|
|
buf = f.read(blocksize)
|
|
|
|
while len(buf) > 0:
|
|
hasher.update(buf)
|
|
buf = f.read(blocksize)
|
|
return hasher.hexdigest()
|
|
return None
|
|
|
|
# Location database
|
|
# Currently quite simple just a list of long/lat pairs with a name
|
|
# If it gets many entryes a lookup might takt to long and a better
|
|
# structure might be needed. Some speed up ideas:
|
|
# - Sort it and inter-half method can be used
|
|
# - Use integer part of long or lat as key to get a lower search list
|
|
# - Cache a smal number of lookups, photos is likey to be taken i clusters
|
|
# around a spot during import.
|
|
|
|
def add_location(self, latitude, longitude, place, write=False):
|
|
data = {}
|
|
data['lat'] = latitude
|
|
data['long'] = longitude
|
|
data['name'] = place
|
|
self.location_db.append(data)
|
|
if(write is True):
|
|
self.update_location_db()
|
|
|
|
def get_location_name(self, latitude, longitude, threshold_m):
|
|
last_d = sys.maxint
|
|
name = None
|
|
for data in self.location_db:
|
|
# As threshold is quite smal use simple math
|
|
# From http://stackoverflow.com/questions/15736995/how-can-i-quickly-estimate-the-distance-between-two-latitude-longitude-points # noqa
|
|
# convert decimal degrees to radians
|
|
|
|
lon1, lat1, lon2, lat2 = map(
|
|
radians,
|
|
[longitude, latitude, data['long'], data['lat']]
|
|
)
|
|
|
|
R = 6371000 # radius of the earth in m
|
|
x = (lon2 - lon1) * cos(0.5*(lat2+lat1))
|
|
y = lat2 - lat1
|
|
d = R * sqrt(x*x + y*y)
|
|
# Use if closer then threshold_km reuse lookup
|
|
if(d <= threshold_m and d < last_d):
|
|
name = data['name']
|
|
last_d = d
|
|
|
|
return name
|
|
|
|
def get_location_coordinates(self, name):
|
|
for data in self.location_db:
|
|
if data['name'] == name:
|
|
return (data['lat'], data['long'])
|
|
|
|
return None
|
|
|
|
def update_location_db(self):
|
|
with open(constants.location_db, 'w') as f:
|
|
json.dump(self.location_db, f)
|